Displaying publications 1 - 20 of 94 in total

Abstract:
Sort:
  1. Das S, Thakur S, Korenjak M, Sidorenko VS, Chung FF, Zavadil J
    Nat Rev Cancer, 2022 Oct;22(10):576-591.
    PMID: 35854147 DOI: 10.1038/s41568-022-00494-x
    Aristolochic acids (AAs) are a group of naturally occurring compounds present in many plant species of the Aristolochiaceae family. Exposure to AA is a significant risk factor for severe nephropathy, and urological and hepatobiliary cancers (among others) that are often recurrent and characterized by the prominent mutational fingerprint of AA. However, herbal medicinal products that contain AA continue to be manufactured and marketed worldwide with inadequate regulation, and possible environmental exposure routes receive little attention. As the trade of food and dietary supplements becomes increasingly globalized, we propose that further inaction on curtailing AA exposure will have far-reaching negative effects on the disease trends of AA-associated cancers. Our Review aims to systematically present the historical and current evidence for the mutagenicity and carcinogenicity of AA, and the effect of removing sources of AA exposure on cancer incidence trends. We discuss the persisting challenges of assessing the scale of AA-related carcinogenicity, and the obstacles that must be overcome in curbing AA exposure and preventing associated cancers. Overall, this Review aims to strengthen the case for the implementation of prevention measures against AA's multifaceted, detrimental and potentially fully preventable effects on human cancer development.
    Matched MeSH terms: Mutagenesis
  2. Hussian CHAC, Rahman RNZRA, Leow ATC, Salleh AB, Ali MSM, Latip W
    Prep Biochem Biotechnol, 2024 Apr;54(4):526-534.
    PMID: 37647127 DOI: 10.1080/10826068.2023.2252052
    The Geobacillus zalihae strain T1 produces a thermostable T1 lipase that could be used for industrial purposes. Previously, the GST-T1 lipase was purified through two chromatographic steps: affinity and ion exchange (IEX) but the recovery yield was only 33%. To improve the recovery yield to over 80%, the GST tag from the pGEX system was replaced with a poly-histidine at the N-terminal of the T1 lipase sequence. The novel construct of pGEX/His-T1 lipase was developed by site-directed mutagenesis, where the XbaI restriction site was introduced upstream of the GST tag, allowing the removal of tag via double digestion using XbaI and EcoRI (existing cutting site in the pGEX system). Fragment of 6 × His-T1 lipase fusion was synthesized, cloned into the pGEX4T1 system, and expressed in Escherichia coli BL21 (DE3) pLysS, resulting in lipase-specific activity at 236 U/mg. The single purification step of His-T1 lipase was successfully achieved using nickel Sepharose 6FF with an optimized concentration of 5 mM imidazole for binding, yielding the recovery of 98%, 1,353 U/mg lipase activity, and a 5.7-fold increase in purification fold. His-T1 lipase was characterized and was found to be stable at pH 5-9, active at 70 °C, and optimal at pH 9.
    Matched MeSH terms: Mutagenesis, Site-Directed
  3. Hussin A, Nathan S, Shahidan MA, Nor Rahim MY, Zainun MY, Khairuddin NAN, et al.
    Mol Genet Genomics, 2024 Feb 21;299(1):12.
    PMID: 38381232 DOI: 10.1007/s00438-024-02105-w
    The bacterium Burkholderia pseudomallei is typically resistant to gentamicin but rare susceptible strains have been isolated in certain regions, such as Thailand and Sarawak, Malaysia. Recently, several amino acid substitutions have been reported in the amrB gene (a subunit of the amrAB-oprA efflux pump gene) that confer gentamicin susceptibility. However, information regarding the mechanism of the substitutions conferring the susceptibility is lacking. To understand the mechanism of amino acid substitution that confers susceptibility, this study identifies the corresponding mutations in clinical gentamicin-susceptible B. pseudomallei isolates from the Malaysian Borneo (n = 46; Sarawak: 5; Sabah: 41). Three phenotypically confirmed gentamicin-susceptible (GENs) strains from Sarawak, Malaysia, were screened for mutations in the amrB gene using gene sequences of gentamicin-resistant (GENr) strains (QEH 56, QEH 57, QEH20, and QEH26) and publicly available sequences (AF072887.1 and BX571965.1) as the comparator. The effect of missense mutations on the stability of the AmrB protein was determined by calculating the average energy change value (ΔΔG). Mutagenesis analysis identified a polymorphism-associated mutation, g.1056 T > G, a possible susceptible-associated in-frame deletion, Delta V412, and a previously confirmed susceptible-associated amino acid substitution, T368R, in each of the three GENs isolates. The contribution of Delta V412 needs further confirmation by experimental mutagenesis analysis. The mechanism by which T368R confers susceptibility, as elucidated by in silico mutagenesis analysis using AmrB-modeled protein structures, is proposed to be due to the location of T368R in a highly conserved region, rather than destabilization of the AmrB protein structure.
    Matched MeSH terms: Mutagenesis
  4. Baharum H, Chu WC, Teo SS, Ng KY, Rahim RA, Ho CL
    Phytochemistry, 2013 Aug;92:49-59.
    PMID: 23684235 DOI: 10.1016/j.phytochem.2013.04.014
    Vanadium-dependent haloperoxidases belong to a class of vanadium enzymes that may have potential industrial and pharmaceutical applications due to their high stability. In this study, the 5'-flanking genomic sequence and complete reading frame encoding vanadium-dependent bromoperoxidase (GcVBPO1) was cloned from the red seaweed, Fracilaria changii, and the recombinant protein was biochemically characterized. The deduced amino acid sequence of GcVBPO1 is 1818 nucleotides in length, sharing 49% identity with the vanadium-dependent bromoperoxidases from Corralina officinalis and Cor. pilulifera, respectively. The amino acid residues associated with the binding site of vanadate cofactor were found to be conserved. The Km value of recombinant GcVBPO1 for Br(-) was 4.69 mM, while its Vmax was 10.61 μkat mg(-1) at pH 7. Substitution of Arg(379) with His(379) in the recombinant protein caused a lower affinity for Br(-), while substitution of Arg(379) with Phe(379) not only increased its affinity for Br(-) but also enabled the mutant enzyme to oxidize Cl(-). The mutant Arg(379)Phe was also found to have a lower affinity for I(-), as compared to the wild-type GcVBPO1 and mutant Arg(379)His. In addition, the Arg(379)Phe mutant has a slightly higher affinity for H2O2 compared to the wild-type GcVBPO1. Multiple cis-acting regulatory elements associated with light response, hormone signaling, and meristem expression were detected at the 5'-flanking genomic sequence of GcVBPO1. The transcript abundance of GcVBPO1 was relatively higher in seaweed samples treated with 50 parts per thousand (ppt) artificial seawater (ASW) compared to those treated in 10 and 30 ppt ASW, in support of its role in the abiotic stress response of seaweed.
    Matched MeSH terms: Mutagenesis, Site-Directed*
  5. Vale FF, Nunes A, Oleastro M, Gomes JP, Sampaio DA, Rocha R, et al.
    Sci Rep, 2017 02 16;7:42471.
    PMID: 28205536 DOI: 10.1038/srep42471
    Helicobacter pylori genetic diversity is known to be influenced by mobile genomic elements. Here we focused on prophages, the least characterized mobile elements of H. pylori. We present the full genomic sequences, insertion sites and phylogenetic analysis of 28 prophages found in H. pylori isolates from patients of distinct disease types, ranging from gastritis to gastric cancer, and geographic origins, covering most continents. The genome sizes of these prophages range from 22.6-33.0 Kbp, consisting of 27-39 open reading frames. A 36.6% GC was found in prophages in contrast to 39% in H. pylori genome. Remarkably a conserved integration site was found in over 50% of the cases. Nearly 40% of the prophages harbored insertion sequences (IS) previously described in H. pylori. Tandem repeats were frequently found in the intergenic region between the prophage at the 3' end and the bacterial gene. Furthermore, prophage genomes present a robust phylogeographic pattern, revealing four distinct clusters: one African, one Asian and two European prophage populations. Evidence of recombination was detected within the genome of some prophages, resulting in genome mosaics composed by different populations, which may yield additional H. pylori phenotypes.
    Matched MeSH terms: Mutagenesis, Insertional*
  6. Anuar NFSK, Wahab RA, Huyop F, Halim KBA, Hamid AAA
    J Biomol Struct Dyn, 2020 Sep;38(15):4493-4507.
    PMID: 31630644 DOI: 10.1080/07391102.2019.1683074
    Alkaline-stable lipases are highly valuable biocatalysts that catalyze reactions under highly basic conditions. Herein, computational predictions of lipase from Acinetobacter haemolyticus and its mutant, Mut-LipKV1 was performed to identify functionally relevant mutations that enhance pH performance under increasing basicity. Mut-LipKV1 was constructed by in silico site directed mutagenesis of several outer loop acidic residues, aspartic acid (Asp) into basic ones, lysine (Lys) at positions 51, 122 and 247, followed by simulation under extreme pH conditions (pH 8.0-pH 12.0). The energy minimized Mut-LipKV1 model exhibited good quality as shown by PROCHECK, ERRAT and Verify3D data that corresponded to 79.2, 88.82 and 89.42% in comparison to 75.2, 86.15, and 95.19% in the wild-type. Electrostatic surface potentials and charge distributions of the Mut-LipKV1 model was more stable and better adapted to conditions of elevated pHs (pH 8.0 - 10.0). Mut-LipKV1 exhibited a mixture of neutral and positive surface charge distribution compared to the predominantly negative charge in the wild-type lipase at pH 8.0. Data of molecular dynamics simulations also supported the increased alkaline-stability of Mut-LipKV1, wherein the lipase was more stable at a higher pH 9.0 (RMSD = ∼0.3 nm, RMSF = ∼0.05-0.2 nm), over the optimal pH 8.0 of the wild-type lipase (RMSD = 0.3 nm, RMSF = 0.05-0.20 nm). Thus, the adaptive strategy of replacing surface aspartic acid to lysine in lipase was successful in yielding a more alkaline-stable Mut-LipKV1 under elevated basic conditions.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Mutagenesis, Site-Directed
  7. Nor Yusliza Kamaruddin, Shamsiah Abdullah
    MyJurnal
    This study looked at mutagenic effectiveness of gamma rays d on two varieties of Zingiber officinale Roscoe: Bentong and Tanjung Sepat. The rhizomes were exposed to different doses (0, 5, 7, 9, 11, 13 and 15 Gy) using Caesium-137 as source of the gamma rays. The effect of different gamma doses on the crude fibre composition of irradiated ginger was studied and genetic variability was assessed using molecular marker technique, RAPD. Findings showed different doses of gamma rays could induce variability in these two ginger varieties and the effect was found to be variety-dependent. Bentong variety irradiated with 9 Gy recorded 8.53% of crude fibre composition while Tanjung Sepat irradiated ginger with 5 Gy recorded 8.70% of crude fibre which gave the lowest composition compared with other irradiated ginger. A total of nine different arbitrary decamers were used as primers to amplify DNA from mutant plant material to assess their polymorphism level of ginger mutant lines. Polymorphism of all mutant lines was 97.62% indicating that there were significant changes in genetic sequences in irradiated ginger genotypes.
    Matched MeSH terms: Mutagenesis
  8. Mohd Fadzli Ahmad, Hasdianty Abdullah
    MyJurnal
    The 3D structure of the insecticidal protein Cry1Ba4 produced by B. thuringiensis subsp.
    Entomocidus HD-9 was determined using homology modelling. From the model built, we have
    been able to identify the possible sites for structure modification by site-directed mutagenesis.
    The mutation was introduced at the conserved region of -helix 7 by substituting the
    hydrophobic motif that comprises alanine 216, leucine 217 and phenylalanine 218 with arginine.
    Wild and mutant Cry1Ba4 genes were cloned into pET200/D-TOPO and expressed in the
    expression host. The result suggests that mutant Cry1Ba4 protein was less toxic to the larvae
    Plutella xylostella compared to the wild-type. In conclusion, alteration in the structure of
    Domain I had left an impact on the toxicity of Cry1Ba4 against P. xylostella.
    Matched MeSH terms: Mutagenesis, Site-Directed
  9. Pang SL, Ho KL, Waterman J, Rambo RP, Teh AH, Mathavan I, et al.
    Sci Rep, 2019 Mar 20;9(1):4933.
    PMID: 30894561 DOI: 10.1038/s41598-019-40879-x
    Group 21 and 5 allergens are homologous house dust mite proteins known as mid-tier allergens. To reveal the biological function of group 21 allergens and to understand better the allergenicity of the rDer f 21 allergen, we determined the 1.5 Å crystal structure of rDer f 21 allergen from Dermatophagoides farinae. The rDer f 21 protein consists of a three helical bundle, similar to available structures of group 21 and homologous group 5 allergens. The rDer f 21 dimer forms a hydrophobic binding pocket similar to the one in the Der p 5 allergen, which indicates that both of the homologous groups could share a similar function. By performing structure-guided mutagenesis, we mutated all 38 surface-exposed polar residues of the rDer f 21 allergen and carried out immuno-dot blot assays using 24 atopic sera. Six residues, K10, K26, K42, E43, K46, and K48, which are located in the region between the N-terminus and the loop 1 of rDer f 21 were identified as the major IgE epitopes of rDer f 21. Epitope mapping of all potential IgE epitopes on the surface of the rDer f 21 crystal structure revealed heterogeneity in the sIgE recognition of the allergen epitopes in atopic individuals. The higher the allergen-sIgE level of an individual, the higher the number of epitope residues that are found in the allergen. The results illustrate the clear correlation between the number of specific major epitope residues in an allergen and the sIgE level of the atopic population.
    Matched MeSH terms: Mutagenesis
  10. Ker DS, Chan KG, Othman R, Hassan M, Ng CL
    Phytochemistry, 2020 May;173:112286.
    PMID: 32059132 DOI: 10.1016/j.phytochem.2020.112286
    The chemical formation of terpenes in nature is carried out by terpene synthases as the main biocatalysts to guide the carbocation intermediate to form structurally diverse compounds including acyclic, mono- and multiple cyclic products. Despite intensive study of the enzyme active site, the mechanism of specific terpene biosynthesis remains unclear. Here we demonstrate that a single mutation of the amino acid L454G or L454A in the active site of Persicaria minor β-sesquiphellandrene synthase leads to a more promiscuous enzyme that is capable of producing additional hydroxylated sesquiterpenes such as sesquicineole, sesquisabinene hydrate and α-bisabolol. Furthermore, the same L454 residue mutation (L454G or L454A) in the active site also improves the protein homogeneity compared to the wild type protein. Taken together, our results demonstrate that residue Leucine 454 in the active site of β-sesquiphellandrene synthase is important for sesquiterpene product diversity as well as the protein homogeneity in solution.
    Matched MeSH terms: Mutagenesis, Site-Directed
  11. Wong YC, Naeem R, Abd El Ghany M, Hoh CC, Pain A, Nathan S
    Front Cell Infect Microbiol, 2022;12:1062682.
    PMID: 36619746 DOI: 10.3389/fcimb.2022.1062682
    INTRODUCTION: Burkholderia pseudomallei, a soil-dwelling microbe that infects humans and animals is the cause of the fatal disease melioidosis. The molecular mechanisms that underlie B. pseudomallei's versatility to survive within a broad range of environments are still not well defined.

    METHODS: We used the genome-wide screening tool TraDIS (Transposon Directed Insertion-site Sequencing) to identify B. pseudomallei essential genes. Transposon-flanking regions were sequenced and gene essentiality was assessed based on the frequency of transposon insertions within each gene. Transposon mutants were grown in LB and M9 minimal medium to determine conditionally essential genes required for growth under laboratory conditions. The Caenorhabditis elegans infection model was used to assess genes associated with in vivo B. pseudomallei survival. Transposon mutants were fed to the worms, recovered from worm intestines, and sequenced. Two selected mutants were constructed and evaluated for the bacteria's ability to survive and proliferate in the nematode intestinal lumen.

    RESULTS: Approximately 500,000 transposon-insertion mutants of B. pseudomallei strain R15 were generated. A total of 848,811 unique transposon insertion sites were identified in the B. pseudomallei R15 genome and 492 genes carrying low insertion frequencies were predicted to be essential. A total of 96 genes specifically required to support growth under nutrient-depleted conditions were identified. Genes most likely to be involved in B. pseudomallei survival and adaptation in the C. elegans intestinal lumen, were identified. When compared to wild type B. pseudomallei, a Tn5 mutant of bpsl2988 exhibited reduced survival in the worm intestine, was attenuated in C. elegans killing and showed decreased colonization in the organs of infected mice.

    DISCUSSION: The B. pseudomallei conditional essential proteins should provide further insights into the bacteria's niche adaptation, pathogenesis, and virulence.

    Matched MeSH terms: Mutagenesis
  12. Taheri S, Abdullah TL, Ahmad Z, Abdullah NA
    Biomed Res Int, 2014;2014:631813.
    PMID: 24719878 DOI: 10.1155/2014/631813
    The effects of eight different doses (0, 10, 20, 25, 35, 40, 60, and 100 Gy) of acute gamma irradiation on 44 (three varieties of Curcuma alismatifolia: Chiang Mai Red, Sweet Pink, Kimono Pink, and one Curcuma hybrid (Doi Tung 554) individual plants were investigated. Radiation sensitivity tests revealed that the LD50 values of the varieties were achieved at 21 Gy for Chiang Mai Red, 23 Gy for Sweet Pink, 25 Gy for Kimono Pink, and 28 Gy for Doi Tung 554. From the analysis of variance (ANOVA), significant variations were observed for vegetative traits, flowering development, and rhizome characteristics among the four varieties of Curcuma alismatifolia and dose levels as well as the dose × variety interaction. In irradiated plants, the leaf length, leaf width, inflorescence length, the number of true flowers, the number of pink bracts, number of shoots, plant height, rhizome size, number of storage roots, and number of new rhizomes decreased significantly (P < 0.05) as the radiation dose increased. The cophenetic correlation coefficient (CCC) between genetic dissimilarity matrix estimated from the morphological characters and the UPGMA clustering method was r = 0.93, showing a proof fit. In terms of genetic variation among the acutely irradiated samples, the number of presumed alleles revealed by simple sequence repeats ranged from two to seven alleles with a mean value of 3.1, 4.5, and 5.3 alleles per locus for radiation doses of 0, 10, and 20 Gy, respectively. The average values of the effective number of alleles, Nei's gene diversity, and Shannon's information index were 2.5-3.2, 0.51-0.66, and 0.9-1.3, respectively. The constructed dendrogram grouped the entities into seven clusters. Principal component analysis (PCA) supported the clustering results. Consequently, it was concluded that irradiation with optimum doses of gamma rays efficiently induces mutations in Curcuma alismatifolia varieties.
    Matched MeSH terms: Mutagenesis/radiation effects*
  13. Ling SO, Storms R, Zheng Y, Rodzi MR, Mahadi NM, Illias RM, et al.
    ScientificWorldJournal, 2013;2013:634317.
    PMID: 24381522 DOI: 10.1155/2013/634317
    The ease with which auxotrophic strains and genes that complement them can be manipulated, as well as the stability of auxotrophic selection systems, are amongst the advantages of using auxotrophic markers to produce heterologous proteins. Most auxotrophic markers in Aspergillus oryzae originate from chemical or physical mutagenesis that may yield undesirable mutations along with the mutation of interest. An auxotrophic A. oryzae strain S1 was generated by deleting the orotidine-5'-monophosphate decarboxylase gene (pyrG) by targeted gene replacement. The uridine requirement of the resulting strain GR6 pyrGΔ0 was complemented by plasmids carrying a pyrG gene from either Aspergillus nidulans or A. oryzae. β -Galactosidase expression by strain GR6 pyrGΔ0 transformed with an A. niger plasmid encoding a heterologous β -galactosidase was at least 150 times more than that obtained with the untransformed strain. Targeted gene replacement is thus an efficient way of developing auxotrophic mutants in A. oryzae and the auxotrophic strain GR6 pyrGΔ0 facilitated the production of a heterologous protein in this fungus.
    Matched MeSH terms: Mutagenesis, Site-Directed/methods*
  14. Goh PH, Illias RM, Goh KM
    Int J Mol Sci, 2012;13(5):5307-23.
    PMID: 22754298 DOI: 10.3390/ijms13055307
    Studies related to the engineering of calcium binding sites of CGTase are limited. The calcium binding regions that are known for thermostability function were subjected to site-directed mutagenesis in this study. The starting gene-protein is a variant of CGTase Bacillus sp. G1, reported earlier and denoted as "parent CGTase" herein. Four CGTase variants (S182G, S182E, N132R and N28R) were constructed. The two variants with a mutation at residue 182, located adjacent to the Ca-I site and the active site cleft, possessed an enhanced thermostability characteristic. The activity half-life of variant S182G at 60 °C was increased to 94 min, while the parent CGTase was only 22 min. This improvement may be attributed to the formation of a shorter α-helix and the alleviation of unfavorable steric strains by glycine at the corresponding region. For the variant S182E, an extra ionic interaction at the A/B domain interface increased the half-life to 31 min, yet it reduced CGTase activity. The introduction of an ionic interaction at the Ca-I site via the mutation N132R disrupted CGTase catalytic activity. Conversely, the variant N28R, which has an additional ionic interaction at the Ca-II site, displayed increased cyclization activity. However, thermostability was not affected.
    Matched MeSH terms: Mutagenesis, Site-Directed*
  15. Hussain H, Chong NF
    Biomed Res Int, 2016;2016:8041532.
    PMID: 27995143
    The combined overlap extension PCR (COE-PCR) method developed in this work combines the strengths of the overlap extension PCR (OE-PCR) method with the speed and ease of the asymmetrical overlap extension (AOE-PCR) method. This combined method allows up to 6 base pairs to be mutated at a time and requires a total of 40-45 PCR cycles. A total of eight mutagenesis experiments were successfully carried out, with each experiment mutating between two to six base pairs. Up to four adjacent codons were changed in a single experiment. This method is especially useful for codon optimization, where doublet or triplet rare codons can be changed using a single mutagenic primer set, in a single experiment.
    Matched MeSH terms: Mutagenesis, Site-Directed/methods*
  16. Mohamed RA, Salleh AB, Leow TC, Yahaya NM, Abdul Rahman MB
    Protein Eng. Des. Sel., 2018 06 01;31(6):221-229.
    PMID: 30239965 DOI: 10.1093/protein/gzy023
    A broad substrate specificity enzyme that can act on a wide range of substrates would be an asset in industrial application. T1 lipase known to have broad substrate specificity in its native form apparently exhibits the same active sites as polyhydroxylalkanoate (PHA) depolymerase. PhaZ6Pl is one of the PHA depolymerases that can degrade semicrystalline P(3HB). The objective of this study is to enable T1 lipase to degrade semicrystalline P(3HB) similar to PhaZ6Pl while maintaining its native function. A structural study on PhaZ6Pl contains no lid in its structure and therefore T1 lipase was designed with removal of its lid region. BSLA lipase was chosen as the reference protein for T1 lipase modification since it contains no lid. Initially, structures of both enzymes were compared via protein-protein superimposition in 3D-space and the location of the lid region of T1 lipase was highlighted. A total of three variants of T1 lipase without lid were successfully designed by referring to BSLA lipase (a lipase without lid). The ability of T1 lipase without lid variants in degrading P(3HB) was investigated quantitatively. All the variants showed activity towards the substrate which confirmed that T1 lipase without lid is indeed able to degrade P(3HB). In addition, D2 was recorded to have the highest activity amongst other variants. Results obtained in this study highlighted the fact that native T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation but also P(3HB) by simply removing the lid region.
    Matched MeSH terms: Mutagenesis, Site-Directed*
  17. Teh AHT, Lee SM, Dykes GA
    BMC Res Notes, 2017 May 12;10(1):182.
    PMID: 28499399 DOI: 10.1186/s13104-017-2504-1
    BACKGROUND: Biofilm formation has been suggested to play a role in the survival of Campylobacter jejuni in the environment and contribute to the high incidence of human campylobacteriosis. Molecular studies of biofilm formation by Campylobacter are sparse.

    RESULTS: We attempted to identify genes that may be involved in biofilm formation in seven C. jejuni strains through construction of mutants using the EZ-Tn5 Transposome system. Only 14 mutants with reduced biofilm formation were obtained, all from one strain of C. jejuni. Three different genes of interest, namely CmeB (synthesis of multidrug efflux system transporter proteins), NusG (transcription termination and anti-termination protein) and a putative transmembrane protein (involved in membrane protein function) were identified. The efficiency of the EZ::TN5 transposon mutagenesis approach was strain dependent and was unable to generate any mutants from most of the strains used.

    CONCLUSIONS: A diverse range of genes may be involved in biofilm formation by C. jejuni. The application of the EZ::TN5 system for construction of mutants in different Campylobacter strains is limited.

    Matched MeSH terms: Mutagenesis, Insertional/methods*
  18. Liam CK, Pang YK, Poh ME, Kow KS, Wong CK, Varughese R
    Respirol Case Rep, 2013 Sep;1(1):20-2.
    PMID: 25473531 DOI: 10.1002/rcr2.14
    Breast metastases from non-small cell lung carcinoma are rarely reported. We report a case of a female patient with primary adenocarcinoma of the lower lobe of her right lung presenting with a massive right-sided malignant pleural effusion. The tumor harbored an epidermal growth factor receptor insertion mutation in exon 20 but was anaplastic lymphoma kinase translocation negative. She did not respond to treatment with erlotinib. First- and second-line cytotoxic chemotherapy resulted in stable disease as the best responses. She developed right breast metastasis 20 months after her initial presentation. The rarity of the condition and the likely mechanism of the breast metastasis are discussed.
    Matched MeSH terms: Mutagenesis, Insertional
  19. Garba L, Mohamad Yussoff MA, Abd Halim KB, Ishak SNH, Mohamad Ali MS, Oslan SN, et al.
    PeerJ, 2018;6:e4347.
    PMID: 29576935 DOI: 10.7717/peerj.4347
    Membrane-bound fatty acid desaturases perform oxygenated desaturation reactions to insert double bonds within fatty acyl chains in regioselective and stereoselective manners. The Δ9-fatty acid desaturase strictly creates the first double bond between C9 and 10 positions of most saturated substrates. As the three-dimensional structures of the bacterial membrane fatty acid desaturases are not available, relevant information about the enzymes are derived from their amino acid sequences, site-directed mutagenesis and domain swapping in similar membrane-bound desaturases. The cold-tolerantPseudomonassp. AMS8 was found to produce high amount of monounsaturated fatty acids at low temperature. Subsequently, an active Δ9-fatty acid desaturase was isolated and functionally expressed inEscherichia coli. In this paper we report homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerantPseudomonassp. AMS8 for the first time to the best of our knowledge. Three dimensional structure of the enzyme was built using MODELLER version 9.18 using a suitable template. The protein model contained the three conserved-histidine residues typical for all membrane-bound desaturase catalytic activity. The structure was subjected to energy minimization and checked for correctness using Ramachandran plots and ERRAT, which showed a good quality model of 91.6 and 65.0%, respectively. The protein model was used to preform MD simulation and docking of palmitic acid using CHARMM36 force field in GROMACS Version 5 and Autodock tool Version 4.2, respectively. The docking simulation with the lowest binding energy, -6.8 kcal/mol had a number of residues in close contact with the docked palmitic acid namely, Ile26, Tyr95, Val179, Gly180, Pro64, Glu203, His34, His206, His71, Arg182, Thr85, Lys98 and His177. Interestingly, among the binding residues are His34, His71 and His206 from the first, second, and third conserved histidine motif, respectively, which constitute the active site of the enzyme. The results obtained are in compliance with thein vivoactivity of the Δ9-fatty acid desaturase on the membrane phospholipids.
    Matched MeSH terms: Mutagenesis, Site-Directed
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links