METHODS: In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons.
RESULTS: The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4).
CONCLUSION: These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes.
OBJECTIVE: This study aims to investigate the cytotoxic effects of betel quid and areca nut extracts on the fibroblast (L929), mouth-ordinary-epithelium 1 (MOE1) and oral squamous cell carcinoma (HSC-2) cell lines.
METHODS: L929, MOE1 and HSC-2 cells were treated with 0.1, 0.2 and 0.4 g/ml of betel quid and areca nut extracts for 24, 48 and 72 h. MTT assay was performed to assess the cell viability.
RESULTS: Both extracts, regardless of concentration, significantly reduced the cell viability of L929 compared with the control (P<0.05). Cell viability of MOE1 was significantly enhanced by all betel quid concentrations compared with the control (P<0.05). By contrast, 0.4 g/ml of areca nut extract significantly reduced the cell viability of MOE1 at 48 and 72 h of incubation. Cell viability of HSC-2 was significantly lowered by all areca nut extracts, but 0.4 g/ml of betel quid significantly increased the cell viability of HSC-2 (P<0.05).
CONCLUSION: Areca nut extract is cytotoxic to L929 and HSC-2, whereas the lower concentrations of areca nut extract significantly increased the cell viability of MOE1 compared to the higher concentration and control group. Although betel quid extract is cytotoxic to L929, the same effect is not observed in MOE1 and HSC-2 cell lines. Further investigations are needed to clarify the mechanism of action.
.
METHODS: Information on reproductive characteristics was collected at recruitment. Cox proportional hazards regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs), and multivariable models were adjusted for age and year of diagnosis, body mass index, tumour stage, smoking status and stratified by study centre.
RESULTS: After a mean follow-up of 3.6 years (±3.2 s.d.) following EOC diagnosis, 511 (49.9%) of the 1025 women died from EOC. We observed a suggestive survival advantage in menopausal hormone therapy (MHT) users (ever vs never use, HR=0.80, 95% CI=0.62-1.03) and a significant survival benefit in long-term MHT users (⩾5 years use vs never use, HR=0.70, 95% CI=0.50-0.99, P(trend)=0.04). We observed similar results for MHT use when restricting to serous cases. Other reproductive factors, including parity, breastfeeding, oral contraceptive use and age at menarche or menopause, were not associated with EOC-specific mortality risk.
CONCLUSIONS: Further studies are warranted to investigate the possible improvement in EOC survival in MHT users.
MATERIALS AND METHODS: Retrospective review of patients' medical records was conducted at a private medical centre that delivered the IM protocol for patients with advanced and recurrent ovarian cancers. We explored and analysed the overall survival and disease progressions of those who received the IM treatment for at least 2 months.
RESULTS: Forty patients with advanced ovarian cancers fulfilled the inclusion criteria for this case series. An overall of 75% of the cases achieved remission with initial IM treatment, 17.5% had a partial response and 7.5% showed progressive disease. The overall 5-year survival for all 40 cases is 53.1%. When explored further, the 5-year survival for cases who received CAM only is 75%, and cases who received combined limited chemotherapy with CAM had a 5-year survival of 55%. At study endpoint, 11 cases died due to ovarian cancer.
CONCLUSION: These findings suggest that CAM may be a valuable addition to conventional therapy to treat and improve the survival of patients with ovarian cancers. A formal randomized control trial is required to evaluate the efficacy and long-term outcomes of using IM to treat advanced and recurrent ovarian cancers.
OBJECTIVE: We used a nutrient-wide association study approach to systematically test the association between dietary factors and invasive EOC risk while accounting for multiple hypothesis testing by using the false discovery rate and evaluated the findings in an independent cohort.
DESIGN: We assessed dietary intake amounts of 28 foods/food groups and 29 nutrients estimated by using dietary questionnaires in the EPIC (European Prospective Investigation into Cancer and Nutrition) study (n = 1095 cases). We selected 4 foods/nutrients that were statistically significantly associated with EOC risk when comparing the extreme quartiles of intake in the EPIC study (false discovery rate = 0.43) and evaluated these factors in the NLCS (Netherlands Cohort Study; n = 383 cases). Cox regression models were used to estimate HRs and 95% CIs.
RESULTS: None of the 4 dietary factors that were associated with EOC risk in the EPIC study (cholesterol, polyunsaturated and saturated fat, and bananas) were statistically significantly associated with EOC risk in the NLCS; however, in meta-analysis of the EPIC study and the NLCS, we observed a higher risk of EOC with a high than with a low intake of saturated fat (quartile 4 compared with quartile 1; overall HR: 1.21; 95% CI: 1.04, 1.41).
CONCLUSION: In the meta-analysis of both studies, there was a higher risk of EOC with a high than with a low intake of saturated fat.
METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients.
RESULTS: The most significant global associations for all genes in the pathway were seen in endometrioid ( p = 0.082) and clear cell ( p = 0.083), with the most significant gene level association seen with TGFBR2 ( p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 ( p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA ( p = 0.035, endometrioid and mucinous), LGALS1 ( p = 0.03, mucinous), STAT5B ( p = 0.022, clear cell), TGFBR1 ( p = 0.021 endometrioid) and TGFBR2 ( p = 0.017 and p = 0.025, endometrioid and mucinous, respectively).
CONCLUSIONS: Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients.