Displaying all 17 publications

Abstract:
Sort:
  1. Ng S, Sathasivam RV, Lo KM
    Magn Reson Chem, 2011 Nov;49(11):749-52.
    PMID: 22002760 DOI: 10.1002/mrc.2827
    NMR measurements ((119)Sn chemical shift, line width and (13)C relaxation) were made on triphenyltin chloride in two solutions, 2.5 and 0.75 mol% in CDCl(3), at several temperatures. The (13)C spin-lattice relaxation time and NOE data for the phenyl carbons provide the corresponding correlation times for the overall molecular reorientational motion and the internal rotation of the phenyl groups. The results are indicative of a weak intermolecular association of the triphenyltin chloride molecules in solution and are discussed with reference to a model for intermolecular phenyl ring π-π stacking interactions.
    Matched MeSH terms: Organotin Compounds/analysis*
  2. Ng SW, Shanmuga Sundara Raj S, Fun HK, Razak IA, Hook JM
    Acta Crystallogr C, 2000 Aug;56 ( Pt 8):966-8.
    PMID: 10944291
    catena-Poly[dicyclohexylammonium [tributyltin-mu-(4-oxo-4H-pyran-2,6-dicarboxylato-O(2):O( 6))]], (C(12)H(24)N)[Sn(C(7)H(2)O(6))(C(4)H(9))(3)], consists of 4-oxo-4H-pyran-2,6-dicarboxylato groups that axially link adjacent tributyltin units into a linear polyanionic chain. The ammonium counter-ions surround the chain, and each cation forms a pair of hydrogen bonds to the double-bond carbonyl O atoms of the same dianionic group. The chain propagates in a zigzag manner along the c axis of the monoclinic cell. In catena-poly[methyl(phenyl)ammonium [tributyltin-mu-(pyridine-2,6-dicarboxylato-O(2):O(6))]], (C(7)H(10)N)[Sn(C(7)H(3)NO(4))(C(4)H(9))(3)], the pyridine-2, 6-dicarboxylato groups also link the tributyltin groups into a chain, but the hydrogen-bonded chain propagates linearly on the ac face of the monoclinic cell.
    Matched MeSH terms: Organotin Compounds/chemistry*
  3. Ng SW
    Acta Crystallogr C, 2000 Mar 15;56(Pt 3):E86-7.
    PMID: 15263207
    The Sn atom in catena-poly[triphenyltin(IV)-micro-(3-ureidopropionato-O(1):O(3))], [Sn(C(6)H(5))(3)(C(4)H(7)N(2)O(3))](n), is five-coordinate and has a trans-C(3)SnO(2) trigonal-bipyrmidal geometry arising from bridging through the O atom of the ureido fragment of an adjacent carboxylate group. Infinite chains propagate helically along the c axis and adjacent chains are linked by N-H.O [N.O 2.851 (4) A] hydrogen bonds into layers.
    Matched MeSH terms: Organotin Compounds
  4. Kamaludin NF, Awang N, Baba I, Hamid A, Meng CK
    Pak J Biol Sci, 2013 Jan 01;16(1):12-21.
    PMID: 24199481
    Organotin complexes are recognized as the biologically active compounds in inducing cancerous cells death at very low doses. To date, organotin compounds currently appear among the most potent candidates in research related to the new anticancer drugs. In this study, new organotin(IV) N-butyl-N-phenyldithiocarbamate compounds have been successfully synthesized between the reaction of N-butylaniline amine with organotin(IV) chloride in 1:2/1:1 molar ratio. All compounds were characterized using the elemental analysis, FT-IR and NMR spectroscopy. The single crystal structure was determined by X-ray single crystal analysis. The elemental analysis showed good agreement with the suggested formula (C4H9)2Sn[S2CN(C4H9)(C6H5)]2 (Compound 1 and 2), (C6H5)2Sn[S2CN(C4H9)(C6H5)]2 (Compound 3) and (C6H5)3Sn[S2CN(C4H9)(C6H5)] (Compound 4). The important infrared absorbance peaks, v (C = N) and v(C = S) were detected in range between 1457-1489 cm(-1) and 951-996 cm(-1), respectively. The chemical shift of carbon in NCS2 group obtained from 13C NMR was found in range 198.86-203.53 ppm. The crystal structure of compound 4 showed that the dithiocarbamate ligand coordinates in a monodentate fashion. It crystallized in monoclinic P2(1)/n space group with the crystal cell parameter: a = 10.0488(1) angstroms, b = 18.0008(2) angstroms, c = 15.2054(2) angstroms, beta = 102.442(1) degrees and R = 0.044. The cytotoxicity (IC50) of these compounds against Jurkat E6.1 and K-562 leukemia cells were in the range between 0.4-0.8 and 1.8-5.3 microM, respectively as assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazholium bromide (MTT) assay. In conclusion, our study demonstrate that all compounds showed potent cytotoxicity towards both cell lines tested with the triphenyltin(IV) compound displayed the greatest effect.
    Matched MeSH terms: Organotin Compounds/chemical synthesis; Organotin Compounds/pharmacology*; Organotin Compounds/chemistry
  5. Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N
    Arch Environ Contam Toxicol, 2009 Apr;56(3):468-78.
    PMID: 18979060 DOI: 10.1007/s00244-008-9252-0
    The concentrations of butyltins (BTs) in sediment from Peninsular Malaysia along the Strait of Malacca and their spatial distribution are discussed. The concentrations of BTs were high in the southern part of Peninsular Malaysia where there is a lot of ship traffic, because trade is prosperous. The concentrations of monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) in sediment from the coastal waters of Peninsular Malaysia were in the range 4.1-242 microg/kg dry weight (dw), 1.1-186 microg/kg dw, and 0.7-228 microg/kg dw, respectively. A higher percentage of TBT was observed in the area where TBT concentrations were high. The concentrations of monophenyltin (MPT), diphenyltin (DPT), and triphenyltin (TPT) were in the range <0.1-121 microg/kg dw, 0.4-27 microg/kg dw, and 0.1-34 microg/kg dw in sediment from Peninsular Malaysia, respectively. MPT was the dominant phenyltin species. MBT, DBT, and TBT in green mussel (Perna viridis) samples were detected in the range 41-102 microg/kg, 3-5 microg/kg, and 8-32 microg/kg, respectively. A tolerable average residue level (TARL) was estimated at 20.4 microg/kg from a tolerable daily intake (TDI) of 0.25 microg TBTO/kg body weight/day. The maximum value of TBT detected in green mussel samples was the value near the TARL. TPTs were not detected in green mussel samples. The concentrations of Diuron and Irgarol 1051 in sediment from Peninsular Malaysia were in the range <0.1-5 microg/kg dw and <0.1-14 microg/kg dw, respectively. High concentrations of these compounds were observed in locations where the concentrations of TBT were high. Sea Nine 211, Dichlofluanid, and Pyrithiones were not detected in sediment. The concentrations of antifouling biocides in Melaka and the Strait of Johor were investigated in detail. BTs were found in similar concentrations among all sampling sites from Melaka, indicating that BT contamination spread off the coast. However, Sea Nine 211, Diuron, and Irgarol 1051 in the sediment from Melaka were high at the mouth of the river. BT concentrations at the Strait of Johor were higher than those in Peninsular Malaysia and Melaka and were high at the narrowest locations with poor flushing of water. The concentrations of antifouling biocides were compared among Malaysia, Thailand, and Vietnam. A higher concentration and wide variations of TBT and TPT in sediment from Malaysia were observed among these countries. The Irgarol 1051 concentrations in sediment from Malaysia were higher than those in Thailand and Vietnam.
    Matched MeSH terms: Organotin Compounds/analysis*
  6. Mohamad R, Awang N, Kamaludin NF, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Mar 01;74(Pt 3):302-308.
    PMID: 29765711 DOI: 10.1107/S2056989018001901
    The crystal and mol-ecular structures of the two title organotin di-thio-carbamate compounds, [Sn(C4H9)2(C7H14NO2S2)2], (I), and [Sn(C6H5)3(C5H10NOS2)], (II), are described. Both structures feature asymmetrically bound di-thio-carbamate ligands leading to a skew-trapezoidal bipyramidal geometry for the metal atom in (I) and a distorted tetra-hedral geometry in (II). The complete mol-ecule of (I) is generated by a crystallographic twofold axis (Sn site symmetry 2). In the crystal of (I), mol-ecules self-assemble into a supra-molecular array parallel to (10-1) via methyl-ene-C-H⋯O(meth-oxy) inter-actions. In the crystal of (II), supra-molecular dimers are formed via pairs of weak phenyl-C-H⋯π(phen-yl) contacts. In each of (I) and (II), the specified assemblies connect into a three-dimensional architecture without directional inter-actions between them. Hirshfeld surface analyses confirm the importance of H⋯H contacts in the mol-ecular packing of each of (I) and (II), and in the case of (I), highlight the importance of short meth-oxy-H⋯H(but-yl) contacts between layers.
    Matched MeSH terms: Organotin Compounds
  7. Awang N, Kamaludin NF, Ghazali AR
    Pak J Biol Sci, 2011 Aug 01;14(15):768-74.
    PMID: 22303582
    Cancer is one of the main causes of mortality and morbidity in world. New compounds are currently being synthesized to combat this disease. The organotins are gaining more attention as anti-cancer agents due to their potent cytotoxicity properties. In this study, a series of newly synthesized organotins namely dimethyltin (IV) (compound 1), dibutyltin (IV) (compound 2) and triphenyltin (IV) benzylisopropyldithiocarbamate (compound 3) were assessed for their cytotoxic activities against human Chang liver cells and hepatocarcinoma HepG2 cells. The cytotoxicity of these organotins in both cells upon 24 h treatment was assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Compound 2 and 3 exhibited potent cytotoxic activities towards both cells where the IC50 values were less then 10 microM. The IC50 value for compound 2 was 2.5 microM in Chang liver cells and 7.0 microM in HepG2 cells whereas compound 3 exhibited an IC50 value of 1.5 microM in Chang liver cells and 2.5 microM in HepG2 cells. Therefore, compound 2 and 3 were more toxic against human Chang liver cells as compared to hepatocarcinoma HepG2 cells. Interestingly, compound 1 did not have any IC50 value in both cells and hence can be classified as non-toxic. In conclusion, organotin (IV) benzylisopropyldithiocarbamate with insertion of dibutyl and triphenyl functional group possess potent cytotoxicity properties. Structural modification of these compounds can be carried out in further studies to produce less or non toxic effects towards normal human cell.
    Matched MeSH terms: Organotin Compounds/pharmacology; Organotin Compounds/toxicity*
  8. Basu Baul TS, Dutta D, Duthie A, Prasad R, Rana NK, Koch B, et al.
    J Inorg Biochem, 2017 08;173:79-92.
    PMID: 28505480 DOI: 10.1016/j.jinorgbio.2017.04.020
    The cytotoxic potency of a series of triphenyltin(IV) compounds of general composition [Ph3Sn(Ln)] (1-6) has been probed in vitro employing MDA-MB-231 (human breast cancer) and HeLa (human cervical cancer) cell lines, where Ln=L1-3; isomeric 2/3/4-{(E)-2-[4-(dimethylamino)phenyl]diazenyl}benzoates and L4-6are their corresponding isoelectronic imino analogues 2/3/4-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]benzoates. Compounds 1-6 have been characterized by elemental analysis and their spectroscopic properties were studied using IR and NMR (1H,13C,119Sn) techniques. The molecular structures of a pro-ligand 2-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]benzoic acid (HL4) and two representative molecules, Ph3Sn(L2) 2 and Ph3Sn(L5) 5, have been determined by X-ray crystallography. Structural analyses of 2 and 5 revealed distorted tetrahedral geometries within C3O donor sets owing to monodentate modes of coordination of the respective carboxylate ligands, close intramolecular Sn…O(carbonyl) interactions notwithstanding. Cytotoxic studies in vitro in MDA-MB-231 and HeLa cell lines revealed high activity, in sub-micromolar range, for all investigated compounds. Among these, 1 and 3 exhibited potent cytotoxicity most effectively towards MDA-MB-231 cells with a IC50value of 1.19 and 1.44μM, respectively, whereas 5 showed remarkable activity towards HeLa cells with a IC50value of 0.88μM, yet the series of compounds had minimal cytotoxic effect on normal HEK 293 (human embryonic kidney) cell line. The underlying investigation suggested that the compounds exert potent antitumor effect by elevating intracellular reactive oxygen species generation and cause delay in cell cycle by inhibiting cells at G2/M phase. The results presented herein suggest further development of this class of triphenyltin(IV) compounds-based drugs as potential anti-cancer therapies should be pursued.
    Matched MeSH terms: Organotin Compounds/pharmacology*; Organotin Compounds/chemistry*
  9. Haezam FN, Awang N, Kamaludin NF, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2020 Feb 01;76(Pt 2):167-176.
    PMID: 32071741 DOI: 10.1107/S2056989020000122
    The crystal and mol-ecular structures of the title organotin di-thio-carbamate compounds, [Sn(C6H5)3(C7H10NS2)] (I) and [Sn(C6H5)2(C7H10NS2)2] (II), present very distinct tin atom coordination geometries. In (I), the di-thio-carbamate ligand is asymmetrically coordinating with the resulting C3S2 donor set defining a coordination geometry inter-mediate between square-pyramidal and trigonal-bipyramidal. In (II), two independent mol-ecules comprise the asymmetric unit, which differ in the conformations of the allyl substituents and in the relative orientations of the tin-bound phenyl rings. The di-thio-carbamate ligands in (II) coordinate in an asymmetric mode but the Sn-S bonds are more symmetric than observed in (I). The resulting C2S4 donor set approximates an octa-hedral coordination geometry with a cis-disposition of the ipso-carbon atoms and with the more tightly bound sulfur atoms approximately trans. The only directional inter-molecular contacts in the crystals of (I) and (II) are of the type phenyl-C-H⋯π(phen-yl) and vinyl-idene-C-H⋯π(phen-yl), respectively, with each leading to a supra-molecular chain propagating along the a-axis direction. The calculated Hirshfeld surfaces emphasize the importance of H⋯H contacts in the crystal of (I), i.e. contributing 62.2% to the overall surface. The only other two significant contacts also involve hydrogen, i.e. C⋯H/H⋯C (28.4%) and S⋯H/H⋯S (8.6%). Similar observations pertain to the individual mol-ecules of (II), which are clearly distinguishable in their surface contacts, with H⋯H being clearly dominant (59.9 and 64.9%, respectively) along with C⋯H/H⋯C (24.3 and 20.1%) and S⋯H/H⋯S (14.4 and 13.6%) contacts. The calculations of energies of inter-action suggest dispersive forces make a significant contribution to the stabilization of the crystals. The exception is for the C-H⋯π contacts in (II) where, in addition to the dispersive contribution, significant contributions are made by the electrostatic forces.
    Matched MeSH terms: Organotin Compounds
  10. Swesi AT, Yang Farina, Ibrahim Baba
    Sains Malaysiana, 2007;36:21-26.
    Organotin compounds especially the dialkyltin derivatives are reported to possess anti-tumour properties. The diorganotin(IV) complexes of the type Me2SnL1, Me2SnL2, Bu2SnL1, Bu2SnL2 and Ph2SnL1 (L1 and L2 is the anion of the thiosemicarbazone ligand formed by the condensation reaction of 2,3-dihydroxybenzaldehyde with thiosemicarbazide or its N(4)-methyl substituent) were synthesized using 1:1 metal-to-ligand reactant ratios. The newly synthesized complexes were characterized using elemental analysis, infrared and nuclear magnetic resonance (1H, 13C, 119Sn) spectroscopic techniques. Complex formation between the organotin(IV) moiety and the anions of 2,3-dihydroxybenzaldehyde thiosemicarbazone and 2,3-dihydroxybenzaldehyde 4-methylthiosemicarbazone occurred with chelation at the o-dihydroxy positions. The complexes are proposed to have tetrahedral geometry.
    Matched MeSH terms: Organotin Compounds
  11. Sudaryanto A, Takahashi S, Monirith I, Ismail A, Muchtar M, Zheng J, et al.
    Environ. Toxicol. Chem., 2002 Oct;21(10):2119-30.
    PMID: 12371488
    Butyltin compounds (BTs) including mono-, di-, and tributyltin and total tin (sigmaSn), were determined in green mussels (Perna viridis) from various Asian developing countries, such as Cambodia, China (Hong Kong and southern China), Malaysia, India, Indonesia, the Philippines, and Vietnam, to elucidate the contamination status, distribution, and possible sources and to assess the risks on aquatic organisms and humans. Butyltin compounds were detected in green mussels collected from all the sampling location investigated, suggesting widespread contamination of BTs along the coastal waters of Asian developing countries. Among butyltin derivatives, tributyltin (TBT) was the predominant compound, indicating its ongoing usage and recent exposures in Asian coastal waters. Higher concentrations of BTs were found in mussels collected at locations with intensive maritime activities, implying that the usage of TBT as a biocide in antifouling paints was a major source of BTs. In addition, relatively high concentrations of BTs were observed in mussels from aquaculture areas in Hong Kong and Malaysia, as it has been reported in Thailand. With the recent improvement in economic status in Asia, it is probable that an increase in TBT usage will occur in aquaculture. Although contamination levels were generally low in mussel samples from most of the Asian developing countries, some of those from polluted areas in Hong Kong, India, Malaysia, the Philippines, and Thailand revealed levels comparable to those in developed nations. Furthermore, the concentrations of TBT in some mussels from polluted areas exceeded the threshold for toxic effects on organisms and estimated tolerable average residue levels as seafoods for human consumption. A significant correlation was observed between the concentrations of sigmaBTs and sigmaSn in mussels, and sigmaBTs were made up mostly 100% of sigmaSn in mussels taken from locations having intensive maritime/human activities. This suggests that anthropogenic BTs represent the major source of tin accumulation in mussels. To our knowledge, this is a first comprehensive report on butyltin pollution monitoring in developing countries in the Asia-Pacific region.
    Matched MeSH terms: Organotin Compounds/analysis*
  12. Sudaryanto A, Takahashi S, Iwata H, Tanabe S, Ismail A
    Environ Pollut, 2004 Aug;130(3):347-58.
    PMID: 15182968
    Concentration of butyltin compounds (BTs), including tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) and total tin (SigmaSn) were determined in green mussel (Perna viridis), 10 species of muscle fish and sediment from coastal waters of Malaysia. BTs were detected in all these samples ranging from 3.6 to 900 ng/g wet wt., 3.6 to 210 ng/g wet wt., and 18 to 1400 ng/g dry wt. for mussels, fish and sediments, respectively. The concentrations of BTs in several locations of this study were comparable with the reported values from some developed countries and highest among Asian developing nations. Considerable concentration of BTs in several locations might have ecotoxicological consequences and may cause concern to human health. The parent compound TBT was found to be highest than those of its degradation compounds, DBT and MBT, suggesting recent input of TBT to the Malaysian marine environment. Significant positive correlation (Spearman rank correlation: r2=0.82, P<0.0001) was found between BTs and SigmaSn, implying considerable anthropogenic input of butyltin compounds to total tin contamination levels. Enormous boating activities may be a major source of BTs in this country, although aquaculture activities may not be ignored.
    Matched MeSH terms: Organotin Compounds/analysis*
  13. Fani S, Kamalidehghan B, Lo KM, Hashim NM, Chow KM, Ahmadipour F
    Drug Des Devel Ther, 2015;9:6191-201.
    PMID: 26648695 DOI: 10.2147/DDDT.S87064
    A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, (compound C1), was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50) value of 2.5±0.50 μg/mL after 48 hours treatment. The IC50 value was >30 μg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the present study obviously reveal potential cytotoxic effects of compound C1 against human breast cancer MCF-7 cells.
    Matched MeSH terms: Organotin Compounds/chemical synthesis; Organotin Compounds/pharmacology*; Organotin Compounds/chemistry
  14. Adamu AA, Muhamad Sarih N, Gan SN
    R Soc Open Sci, 2021 Apr 14;8(4):201087.
    PMID: 33996112 DOI: 10.1098/rsos.201087
    Polyols of palm olein/polyethylene terephthalate (PET) were synthesized by means of incorporating recycled PET from waste drinking bottles in different proportions into palm olein alkyd in the presence of ethylene glycol. The polyols were characterized by FTIR, and theirs hydroxyl value (OHV), acid value (AV) and viscosity were determined. The formulation of the polyurethane coating was carried out by dissolving the polyol in mixed solvent of cyclohexanone/tetrahydrofuran (THF) (4 : 1) followed by reacting 1 hydroxyl equivalent of the polyol with 1.2 equivalents of methylene diphenyldiisocyanate and 0.05% dibutyltin dilaurate (DBTDL) catalyst. The coating cured through the cross-linking reactions between hydroxyl and isocyanate groups. The formation of urethane linkages was established by FTIR spectroscopy. The set films were characterized by thermal analysis. To study their anticorrosion properties, polarization measurements and EIS in 3.5% NaCl solution were determined. The coatings displayed good thermal stability and anticorrosion properties which were supported by XRD analysis. The PU7 coating, with the highest proportion of PET (up to 15% w/w), displayed significantly improved thermal stability and anticorrosion properties. It is evident that the performance of the polyurethane (PU) coatings could be enhanced by the incorporation of PET.
    Matched MeSH terms: Organotin Compounds
  15. Mek Zah Salleh, Khairiah Badri, Sahrim Ahmad, Mohd Hilmi Mahmood
    MyJurnal
    UV-curable hyperbranched urethane acrylate (HBPUA) from oleic acid of palm oil has been synthesized through a medium aided by p-toluene sulfonic acid as a catalyst. This mixture was then used as the core (HBP) and reacted with palm oil oleic acid to form the hyperbranched polyol (HBP-1). HBPUA was prepared by reacting HBP-1 resin with diisocyanate and hydroxyl-containing acrylate monomer with the presence of 0.1-2 wt% dibutyltin dilaurate as a catalyst. The reaction was confirmed by several analytical data i.e. hydroxyl value (OHV), Fourier Transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy analyses. The HBPUA was easily curable when subjected to ultraviolet (UV) radiation.
    Matched MeSH terms: Organotin Compounds
  16. Awang N, Kamaludin NF, Hamid A, Mokhtar NW, Rajab NF
    Pak J Biol Sci, 2012 Sep 01;15(17):833-8.
    PMID: 24163967
    Studies on the discovery of new cancer treatment by using metal-based compounds such as tin (Sn) has now greatly being synthesized and evaluated to identify their effectiveness and suitability to be developed as a new anticancer drug.

    APPROACH: This study was carried out to evaluate the cytotoxicity of triphenyltin(lV) methylisopropyldithiocarbamate (compound 1) and triphenyltin(IV) ethylisopropyldithiocarbamate (compound (2) on chronic myelogenus leukemia cells. The determination of their cytotoxicity (IC50) at different time of exposure and concentration was carried out through the employment of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay.

    RESULTS: The IC50 values obtained for compound 1 and 2 following treatment at 24, 48 and 72 h were 0.660, 0.223, 0.370 microM and 0.677, 0.306, 0.360 microM, respectively. Cell morphological changes such as apoptotic and necrotic features were also been observed.

    CONCLUSION: The compounds tested were found to give cytotoxic effect against chronic myelogenus leukemia (K-562) cell at a micromolar dose. Thus, further study on their specific mechanism of actions in the human cells should be carried out to elucidate their potential as an anticancer agent.

    Matched MeSH terms: Organotin Compounds/pharmacology*
  17. Haezam FN, Awang N, Kamaludin NF, Mohamad R
    Saudi J Biol Sci, 2021 May;28(5):3160-3168.
    PMID: 34025187 DOI: 10.1016/j.sjbs.2021.02.060
    Context: Diphenyltin(IV) diallyldithiocarbamate compound (Compound 1) and triphenyltin(IV) diallyldithiocarbamate compound (Compound 2) are two newly synthesised compounds of organotin(IV) with diallyldithiocarbamate ligands.

    Objective: To assess the cytotoxic effects of two synthesised compounds against HT-29 human colon adenocarcinoma cells and human CCD-18Co normal colon cells.

    Materials and methods: Two successfully synthesised compounds were characterised using elemental (carbon, hydrogen, nitrogen, and sulphur) analysis, Fourier-Transform Infrared (FTIR), and 1H, 13C 119Sn Nucleus Magnetic Resonance (NMR) spectroscopies. The single-crystal structure of both compounds was determined by X-ray single-crystal analysis. The cytotoxicity of the compounds was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazholium bromide (MTT) assay upon 24 h of treatment. While the mode of cell death was determined based on the externalisation of phosphatidylserine using a flow cytometer.

    Results: The elemental analysis data of the two compounds showed an agreement with the suggested formula of (C6H5)2Sn[S2CN(C3H5)2]2 for Compound 1 and (C6H5)3Sn[S2CN(C3H5)2] for Compound 2. The two major peaks of infrared absorbance, i.e., ν(C = N) and ν(C = S) were detected at the range of 1475-1479 cm-1 and 972-977 cm-1, respectively. The chemical shift of carbon in NCS2 group for Compound 1 and 2 were found at 200.82 and 197.79 ppm. The crystal structure of Compound 1 showed that it is six coordinated and crystallised in monoclinic, P21/c space group. While the crystal structure of Compound 2 is five coordinated and crystallised in monoclinic, P21/c space group. The cytotoxicity (IC50) of the two compounds against HT-29 cell were 2.36 μM and 0.39 μM. Meanwhile, the percentage of cell death modes between 60% and 75% for compound 1 and compound 2 were mainly due to apoptosis, suggesting that both compounds induced growth arrest.

    Conclusion: Our study concluded that the synthesised compounds showed potent cytotoxicity towards HT-29 cell, with the triphenyltin(IV) compound showing the highest effect compared to diphenyltin(IV).

    Matched MeSH terms: Organotin Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links