Displaying publications 1 - 20 of 401 in total

Abstract:
Sort:
  1. Patil KN, Prasad D, Bhagyashree, Manoorkar VK, Nabgan W, Nagaraja BM, et al.
    Chemosphere, 2021 Oct;281:130988.
    PMID: 34289632 DOI: 10.1016/j.chemosphere.2021.130988
    Catalytic hydrolysis of sodium borohydride can potentially be considered as a convenient and safe method to generate hydrogen, an environmentally clean and sustainable fuel for the future. The present effort establishes the development of FeCuCo tri-metallic oxide catalyst by a simple, single-step solution combustion synthesis (SCS) method for hydrogen generation from NaBH4 hydrolysis. Amongst series of FeCuCo tri-metallic oxide catalyst synthesized, FeCuCo with 50:37.5:12.5 wt% respective precursor loading displayed remarkable activity by generating hydrogen at the rate of 1380 mL min-1 g-1 (1242 mL in 18 min) with turnover frequency (TOF) of 62.02 mol g-1 min-1. The catalyst was characterized by using various techniques to understand their physiochemical and morphological properties. The results revealed that the catalyst synthesized by combustion method led to the formation of FeCuCo with appreciable surface area, porous foam-like morphology and high surface acidity. Major factors affecting the hydrolysis of NaBH4 such as catalyst loading, NaOH concentration and temperature variation were studied in detail. Additionally, the FeCuCo catalyst also displayed substantial recyclability performance up to eight cycles without considerable loss in its catalytic activity. Therefore, FeCuCo oxide can be demonstrated as one of the most efficient, cost effective tri-metallic catalyst so far for application in the hydrogen generation.
    Matched MeSH terms: Oxides*
  2. Ong YP, Ho LN, Ong SA, Banjuraizah J, Ibrahim AH, Thor SH, et al.
    Chemosphere, 2021 Jan;263:128212.
    PMID: 33297171 DOI: 10.1016/j.chemosphere.2020.128212
    A unidirectional flow solar photocatalytic fuel cell (PFC) was successfully developed for the first time to offer alternative for electricity generation and simultaneous wastewater treatment. This study was focused on the synthesis of α-, δ- and β-MnO2 by wet chemical hydrothermal method for application as the cathodic catalyst in PFC. The crystallographic evolution was performed by varying the ratios of KMnO4 to MnSO4. The mechanism of the PFC with the MnO2/C as cathode was also discussed. Results showed that the catalytic activity of MnO2/C cathode was mainly predominated by their crystallographic structures which included Mn-O bond strength and tunnel size, following order of α- > δ- > β-MnO2/C. Interestingly, it was discovered that the specific surface areas (SBET) of different crystal phases did not give an impact on the PFC performance. However, the Pmax could be significantly influenced by the micropore surface area (Smicro) in the comparison among α-MnO2. Furthermore, the morphological transformation carried out by altering the hydrothermal duration demonstrated that the nanowire α-M3(24 h)/C with 1:1 ratio of KMnO4 and MnSO4 yielded excellent PFC performance with a Pmax of 2.8680 μW cm-2 and the lowest Rint of 700 Ω.
    Matched MeSH terms: Oxides*
  3. Rashedul HK, Kalam MA, Masjuki HH, Teoh YH, How HG, Monirul IM, et al.
    Environ Sci Pollut Res Int, 2017 Apr;24(10):9305-9313.
    PMID: 28233198 DOI: 10.1007/s11356-017-8573-9
    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.
    Matched MeSH terms: Nitrogen Oxides*
  4. Rajendran S, Blanco A, Gnanasekaran L, Jalil AA, Chen WH, Gracia F
    Chemosphere, 2023 Dec;345:140418.
    PMID: 37844702 DOI: 10.1016/j.chemosphere.2023.140418
    Carbon-integrated binary metal oxide semiconductors have gained prominence in the last decade as a better material for photocatalytic wastewater treatment technology. In this regard, this research describes the investigation of the binary metal oxide TiO2@Fe3O4 embedded on reduced graphene oxide (rGO) nanosheets synthesized through a combination of sol-gel, chemical precipitation, and Hummer's processes. Besides, the catalyst is applied for the photocatalytic degradation of organic chlorophenol pollutants. The characterized diffraction results showed the peak broadening of the rGO-TiO2@Fe3O4 composite formed with tetragonal and cubic structures having small crystallite sizes. The TEM observation shows an enormous miniature of TiO2@Fe3O4 nanospheres spread on the folded 2D-rGO nanosheets with a large BET surface area. The XPS result holds the mixed phases of Fe3O4 and Fe2O3. Finally, the catalyst demonstrated a low band gap with extended light absorption towards visible light irradiation. The synergistic interactions between Fe3+ and Fe2+ improved the visible light activity due to the incorporation of rGO, and also possessed good recycling capacity. The increased mobility of electrons at the interfaces of TiO2 and Fe3O4 due to the mixing of rGO results in the separation of charge carriers by elevating the photocatalytic degradation efficiency of chlorophenol.
    Matched MeSH terms: Oxides/chemistry
  5. Chen YZ, Yong MJ, Tan VY, Kong SLS, Elnawawy HMA, Yahya NA, et al.
    Eur Endod J, 2023 May;8(3):215-224.
    PMID: 37257037 DOI: 10.14744/eej.2023.36449
    OBJECTIVE: This study compared the effects of calcium chloride dihydrate (CaCl2.2H2O) on the physical properties and push-out bond strength of white Mineral Trioxide Aggregate (WMTA) and an experimental Malaysian Portland cement mixed with nano-zirconium oxide (nano-ZrO) [(radiopaque Malaysian Portland cement (RMPC). Mineral Trioxide Aggregate (MTA) was the first calcium silicate cement (CSC) introduced in dentistry, but up to date, it is an expensive cement with long setting time and causes tooth discolouration. Although Portland cement has been introduced as a potential substitute to MTA, it still faces some challenges such as long setting time and lack of sufficient radiopacity.

    METHODS: Four groups [WMTA, RMPC, fast-set WMTA (FS-WMTA) and fast-set RMPC (FS-RMPC)] were prepared. Initial setting time was evaluated using Vicat apparatus. The pH was measured at seven-day intervals. For discolouration potential, cements were packed in the pulp chamber of 46 extracted maxillary incisors. Spectrophotometric readings were obtained at seven-day intervals, and the rate of colour change (ΔE) was recorded. For the push-out bond strength testing, cements were applied in 48 sectioned root samples, and the test was performed using universal testing machine at crosshead speed of 0.5 mm/min until bond failure. Statistical analysis was done according to the nature of each group of data using SPSS 26.

    RESULTS: Addition of CaCl2.2H2O decreased the initial setting times of both RMPC and WMTA significantly (p<0.05). The pH values of FS-WMTA and FS-RMPC were comparable to their non-accelerated counterparts ranging from 10 to 12. Discolouration effect was more obviously observed with WMTA and FS-WMTA with time compared to RMPC formulations. Push-out bond strength of the two materials also showed an increase with the addition of the accelerator, however, only FS-WMTA showed statistically significant difference compared to WMTA (p<0.05).

    CONCLUSION: The addition of CaCl2.2H2O improves the physical and mechanical properties of the newly formulated RMPC and WMTA. The RMPC formulation overcomes the discolouration potential of WMTA. (EEJ-2022-12-155).

    Matched MeSH terms: Oxides*
  6. Rehman ZU, Rehman MA, Rehman B, Sikiru S, Qureshi S, Ali EM, et al.
    Environ Sci Pollut Res Int, 2023 Nov;30(53):113889-113902.
    PMID: 37858013 DOI: 10.1007/s11356-023-30279-0
    Renewable energy systems are vital for a sustainable future, where solid-state hydrogen storage can play a crucial role. Perovskite hydride materials have attracted the scientific community for hydrogen storage applications. The current work focuses on the theoretical study using density functional theory (DFT) to evaluate the characteristics of MgXH3 (X = Co, Cu, Ni) hydrides. The structural, vibrational, electronic, mechanical, thermodynamic, and hydrogen storage properties of these hydrides were investigated. The equilibrium lattice parameters were calculated using the Birch-Murnaghan equation of state-to-energy volume curves. The elastic constants (Cij) and relevant parameters, such as Born criteria, were calculated to confirm the mechanical stability of the hydrides. The Cauchy pressure (Cp) revealed brittle or ductile behavior. The outcomes of the Pugh ratio, Poisson ratio, and anisotropy were also calculated and discussed. The absence of negative lattice vibrational frequencies in phonon dispersion confirmed the lattice's dynamic stability. The heat capacity curves of thermodynamic properties revealed that hydrides can conduct thermal energy. The metallic character and ample interatomic distances of hydrides were confirmed by the band structure and population analysis, which confirmed that hydrides can conduct electrical energy and adsorb hydrogen. The density of state (DOS) and partial DOS unveiled the role of specific atoms in the DOS of the crystal. The calculated gravimetric hydrogen storage capacity of MgCoH3, MgCuH3, and MgNiH3 hydrides was 3.64, 3.32, and 3.49wt%, respectively. Our results provide a deeper understanding of its potential for hydrogen storage applications through a detailed analysis of MgXH3 (X = Co, Cu, Ni) perovskite hydride material.
    Matched MeSH terms: Oxides*
  7. Halim MA, Rahman AY, Sim KS, Yam HC, Rahim AA, Ghazali AH, et al.
    Genome Announc, 2016;4(1).
    PMID: 26893411 DOI: 10.1128/genomeA.00005-16
    Here, we report the complete genome sequence of Paenibacillus durus type strain ATCC 35681, which can fix atmospheric nitrogen even in the presence of nitrate.
    Matched MeSH terms: Nitrogen Oxides
  8. Alias N, Ali Umar A, Malek NAA, Liu K, Li X, Abdullah NA, et al.
    ACS Appl Mater Interfaces, 2021 Jan 20;13(2):3051-3061.
    PMID: 33410652 DOI: 10.1021/acsami.0c20137
    A deficiency in the photoelectrical dynamics at the interface due to the surface traps of the TiO2 electron transport layer (ETL) has been the critical factor for the inferiority of the power conversion efficiency (PCE) in the perovskite solar cells. Despite its excellent energy level alignment with most perovskite materials, its large density of surface defect as a result of sub lattice vacancies has been the critical hurdle for an efficient photovoltaic process in the device. Here, we report that atoms thick 2D TiS2 layer grown on the surface of a (001) faceted and single-crystalline TiO2 nanograss (NG) ETL have effectively passivated the defects, boosting the charge extractability, carrier mobility, external quantum efficiency, and the device stability. These properties allow the perovskite solar cells (PSCs) to produce a PCE as high as 18.73% with short-circuit current density (Jsc), open-circuit voltage (Voc), and fill-factor (FF) values as high as 22.04 mA/cm2, 1.13 V, and 0.752, respectively, a 3.3% improvement from the pristine TiO2-NG-based PSCs. The present approach should find an extensive application for controlling the photoelectrical dynamic deficiency in perovskite solar cells.
    Matched MeSH terms: Oxides
  9. Pulingam T, Thong KL, Appaturi JN, Lai CW, Leo BF
    Chemosphere, 2021 Oct;281:130739.
    PMID: 34004516 DOI: 10.1016/j.chemosphere.2021.130739
    Recent advances in the field of nanotechnology contributed to the increasing use of nanomaterials in the engineering, health and biological sectors. Graphene oxide (GO) has great potentials as it could be fine-tuned to be adapted into various applications, especially in the electrical, electronic, industrial and clinical fields. One of the important applications of GO is its use as an antibacterial material due to its promising activity against a broad range of bacteria. However, our understanding of the mechanism of action of GO towards bacteria is still lacking and is often less described. Therefore, a comprehensive overview of bactericidal mechanistic actions of GO and the roles of physicochemical factors including size, aggregation, functionalization and adsorption behavior contributing to its antibacterial activities are described in this review. As the use of GO is expected to increase exponentially in the health sector, the cytotoxicity of GO among the cell lines is also discussed. Thus, this review emphasizes the physicochemical characteristics of GO that can be tailored for optimal antibacterial properties that is of importance to the health industry.
    Matched MeSH terms: Oxides/toxicity
  10. Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR
    Int J Nanomedicine, 2011;6:3443-8.
    PMID: 22267928 DOI: 10.2147/IJN.S26812
    Graphene has attracted much attention from researchers due to its interesting mechanical, electrochemical, and electronic properties. It has many potential applications such as polymer filler, sensor, energy conversion, and energy storage devices. Graphene-based nanocomposites are under an intense spotlight amongst researchers. A large amount of graphene is required for preparation of such samples. Lately, graphene-based materials have been the target for fundamental life science investigations. Despite graphene being a much sought-after raw material, the drawbacks in the preparation of graphene are that it is a challenge amongst researchers to produce this material in a scalable quantity and that there is a concern about its safety. Thus, a simple and efficient method for the preparation of graphene oxide (GO) is greatly desired to address these problems. In this work, one-pot chemical oxidation of graphite was carried out at room temperature for the preparation of large-area GO with ~100% conversion. This high-conversion preparation of large-area GO was achieved using a simplified Hummer's method from large graphite flakes (an average flake size of 500 μm). It was found that a high degree of oxidation of graphite could be realized by stirring graphite in a mixture of acids and potassium permanganate, resulting in GO with large lateral dimension and area, which could reach up to 120 μm and ~8000 μm(2), respectively. The simplified Hummer's method provides a facile approach for the preparation of large-area GO.
    Matched MeSH terms: Oxides/chemical synthesis*; Oxides/chemistry
  11. Damanik N, Ong HC, Tong CW, Mahlia TMI, Silitonga AS
    Environ Sci Pollut Res Int, 2018 Jun;25(16):15307-15325.
    PMID: 29721797 DOI: 10.1007/s11356-018-2098-8
    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.
    Matched MeSH terms: Nitrogen Oxides/analysis*; Nitrogen Oxides/chemistry
  12. Kalantari K, Ahmad MB, Masoumi HR, Shameli K, Basri M, Khandanlou R
    Int J Mol Sci, 2014;15(7):12913-27.
    PMID: 25050784 DOI: 10.3390/ijms150712913
    Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions.
    Matched MeSH terms: Oxides/chemistry
  13. Zhu T, Chong MN, Chan ES
    ChemSusChem, 2014 Nov;7(11):2974-97.
    PMID: 25274424 DOI: 10.1002/cssc.201402089
    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future.
    Matched MeSH terms: Oxides/chemistry*
  14. Quah HJ, Ahmad FH, Lim WF, Hassan Z
    ACS Omega, 2020 Oct 20;5(41):26347-26356.
    PMID: 33110962 DOI: 10.1021/acsomega.0c02120
    Nitrogen-infused wet oxidation at different temperatures (400-1000 °C) was employed to transform tantalum-hafnia to hafnium-doped tantalum oxide films. High-temperature wet oxidation at 1000 °C marked an onset of crystallization occurring in the film, accompanied with the formation of an interfacial oxide due to a reaction between the inward-diffusing hydroxide ions, which were dissociated from the water molecules during wet oxidation. The existence of nitrogen has assisted in controlling the interfacial oxide formation. However, high-temperature oxidation caused a tendency for the nitrogen to desorb and form N-H complex after reacting with the hydroxide ions. Besides, the presence of N-H complex implied a decrease in the passivation at the oxide-Si interface by hydrogen. As a consequence, defect formation would happen at the interface and influence the metal-oxide-semiconductor characteristics of the samples. In comparison, tantalum-hafnia subjected to nitrogen-infused wet oxidation at 600 °C has obtained the highest dielectric constant, the largest band gap, and the lowest slow trap density.
    Matched MeSH terms: Hydroxides; Nitrogen Oxides; Oxides
  15. Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M
    Chemosphere, 2021 Jun;272:128607.
    PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607
    Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
    Matched MeSH terms: Oxides/pharmacology
  16. Gan DKW, Loy ACM, Chin BLF, Yusup S, Unrean P, Rianawati E, et al.
    Bioresour Technol, 2018 Oct;265:180-190.
    PMID: 29894912 DOI: 10.1016/j.biortech.2018.06.003
    Thermodynamic and kinetic parameters of catalytic pyrolysis of rice hull (RH) pyrolysis using two different types of renewable catalysts namely natural limestone (LS) and eggshells (ES) using thermogravimetric analysis (TG) approach at different heating rates of 10-100 K min-1 in temperature range of 323-1173 K are investigated. Catalytic pyrolysis mechanism of both catalysts had shown significant effect on the degradation of RH. Model free kinetic of iso-conversional method (Flynn-Wall-Ozawa) and multi-step reaction model (Distributed Activation Energy Model) were employed into present study. The average activation energy was found in the range of 175.4-177.7 kJ mol-1 (RH), 123.3-132.5 kJ mol-1 (RH-LS), and 96.1-100.4 kJ mol-1 (RH-ES) respectively. The syngas composition had increased from 60.05 wt% to 63.1 wt% (RH-LS) and 63.4 wt% (RH-ES). However, the CO2 content had decreased from 24.1 wt% (RH) to 20.8 wt% (RH-LS) and 19.9 wt% (RH-ES).
    Matched MeSH terms: Oxides/chemistry*
  17. Abbasi Pirouz A, Abedi Karjiban R, Abu Bakar F, Selamat J
    Toxins (Basel), 2018 09 06;10(9).
    PMID: 30200553 DOI: 10.3390/toxins10090361
    A novel magnetic graphene oxide modified with chitosan (MGO-CTS) was synthesised as an adsorbent aimed to examine the simultaneous removal of mycotoxins. The composite was characterised by various procedures, namely Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and a scanning electron microscope (SEM). The adsorption evaluation was considered via pH effects, initial mycotoxin concentration, adsorption time and temperature. Adsorption isotherm data and kinetics experiments were acquired at the optimum pH 5 fit Freundlich isotherm as well as pseudo-second-order kinetic models. The thermodynamic results indicated that the adsorption of the mycotoxins was spontaneous, endothermic and favourable.
    Matched MeSH terms: Oxides/chemistry*
  18. Chiam SL, Pung SY, Yeoh FY
    Environ Sci Pollut Res Int, 2020 Feb;27(6):5759-5778.
    PMID: 31933078 DOI: 10.1007/s11356-019-07568-8
    The textile industry consumes a large volume of organic dyes and water. These organic dyes, which remained in the effluents, are usually persistent and difficult to degrade by conventional wastewater treatment techniques. If the wastewater is not treated properly and is discharged into water system, it will cause environmental pollution and risk to living organisms. To mitigate these impacts, the photo-driven catalysis process using semiconductor materials emerges as a promising approach. The semiconductor photocatalysts are able to remove the organic effluent through their mineralization and decolorization abilities. Besides the commonly used titanium dioxide (TiO2), manganese dioxide (MnO2) is a potential photocatalyst for wastewater treatment. MnO2 has a narrow bandgap energy of 1~2 eV. Thus, it possesses high possibility to be driven by visible light and infrared light for dye degradation. This paper reviews the MnO2-based photocatalysts in various aspects, including its fundamental and photocatalytic mechanisms, recent progress in the synthesis of MnO2 nanostructures in particle forms and on supporting systems, and regeneration of photocatalysts for repeated use. In addition, the effect of various factors that could affect the photocatalytic performance of MnO2 nanostructures are discussed, followed by the future prospects of the development of this semiconductor photocatalysts towards commercialization.
    Matched MeSH terms: Oxides*
  19. Senthil Rathi B, Ewe LS, S S, S S, Yew WK, R B, et al.
    Nanotoxicology, 2024 May;18(3):272-298.
    PMID: 38821108 DOI: 10.1080/17435390.2024.2349304
    Synthetic dyes play a crucial role in our daily lives, especially in clothing, leather accessories, and furniture manufacturing. Unfortunately, these potentially carcinogenic substances are significantly impacting our water systems due to their widespread use. Dyes from various sources pose a serious environmental threat owing to their persistence and toxicity. Regulations underscore the urgency in addressing this problem. In response to this challenge, metal oxide nanoparticles such as titanium dioxide (TiO2), zinc oxide (ZnO), and iron oxide (Fe3O4) have emerged as intriguing options for dye degradation due to their unique characteristics and production methods. This paper aims to explore the types of nanoparticles suitable for dye degradation, various synthesis methods, and the properties of nanoparticles. The study elaborates on the photocatalytic and adsorption-desorption activities of metal oxide nanoparticles, elucidating their role in dye degradation and their application potential. Factors influencing degradation, including nanoparticle properties and environmental conditions, are discussed. Furthermore, the paper provides relevant case studies, practical applications in water treatment, and effluent treatment specifically in the textile sector. Challenges such as agglomeration, toxicity concerns, and cost-effectiveness are acknowledged. Future advancements in nanomaterial synthesis, their integration with other materials, and their impact on environmental regulations are potential areas for development. In conclusion, metal oxide nanoparticles possess immense potential in reducing dye pollution, and further research and development are essential to define their role in long-term environmental management.
    Matched MeSH terms: Oxides/chemistry
  20. Barhoumi A, Ryachi K, Belghiti ME, Chafi M, Tounsi A, Syed A, et al.
    J Fluoresc, 2024 Jul;34(4):1913-1929.
    PMID: 37668770 DOI: 10.1007/s10895-023-03411-z
    Employing the Molecular Electron Density Theory, [3 + 2] cycloaddition processes between 4-chlorobenzenenitrileoxide and linalool, have been applied using the DFT/B3LYP/6-311(d,p) method, activation, reaction energies and the reactivity indices are calculated. In an investigation of conceptual DFT indices, LIL-1 will contribute to this reaction as a nucleophile, whilst NOX-2 will participate as an electrophile. This cyclization is regio, chemo and stereospecific, as demonstrated by the reaction and activation energies, in clear agreement with the experiment's results, in addition, ELF analysis revealed that the mechanism for this cycloaddition occurs in two steps. Furthermore, a docking study was conducted on the products studied, and the interaction with the protein protease COVID-19 (PDB ID: 6LU7), our results indicate that the presence of the -OH group increases the affinity of these products, moreover, adsorption study by chromatography was made on silica gel as support; our outcome reveals that the -OH group creates an intramolecular hydrogen bond in the product P2, while in the product P3 will create a hydrogen bond with the silica gel which makes the two products P2 and P3 are very easy to separate by chromatography, this result is in excellent agreement with the Rf retention value. The study might provide a fundamental for developing natural anti-viral compound in promoting human health.
    Matched MeSH terms: Oxides/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links