Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Alvankarian J, Majlis BY
    PLoS One, 2015;10(3):e0119658.
    PMID: 25747514 DOI: 10.1371/journal.pone.0119658
    Rapid prototyping (RP) of microfluidic channels in liquid photopolymers using standard lithography (SL) involves multiple deposition steps and curing by ultraviolet (UV) light for the construction of a microstructure layer. In this work, the conflicting effect of oxygen diffusion and UV curing of liquid polyurethane methacrylate (PUMA) is investigated in microfabrication and utilized to reduce the deposition steps and to obtain a monolithic product. The conventional fabrication process is altered to control for the best use of the oxygen presence in polymerization. A novel and modified lithography technique is introduced in which a single step of PUMA coating and two steps of UV exposure are used to create a microchannel. The first exposure is maskless and incorporates oxygen diffusion into PUMA for inhibition of the polymerization of a thin layer from the top surface while the UV rays penetrate the photopolymer. The second exposure is for transferring the patterns of the microfluidic channels from the contact photomask onto the uncured material. The UV curing of PUMA as the main substrate in the presence of oxygen is characterized analytically and experimentally. A few typical elastomeric microstructures are manufactured. It is demonstrated that the obtained heights of the fabricated structures in PUMA are associated with the oxygen concentration and the UV dose. The proposed technique is promising for the RP of molds and microfluidic channels in terms of shorter processing time, fewer fabrication steps and creation of microstructure layers with higher integrity.
    Matched MeSH terms: Photochemical Processes*
  2. Joseph CG, Li Puma G, Bono A, Krishnaiah D
    Ultrason Sonochem, 2009 Jun;16(5):583-9.
    PMID: 19282232 DOI: 10.1016/j.ultsonch.2009.02.002
    Sonophotocatalysis involves the use of a combination of ultrasonic sound waves, ultraviolet radiation and a semiconductor photocatalyst to enhance a chemical reaction by the formation of free radicals in aqueous systems. Researchers have used sonophotocatalysis in a variety of investigations i.e. from water decontamination to direct pollutant degradation. This degradation process provides an excellent opportunity to reduce reaction time and the amount of reagents used without the need for extreme physical conditions. Given its advantages, the sonophotocatalysis process has a futuristic application from an engineering and fundamental aspect in commercial applications. A detailed search of published reports was done and analyzed in this paper with respect to sonication, photocatalysis and advanced oxidation processes.
    Matched MeSH terms: Photochemical Processes*
  3. Khalik WF, Ong SA, Ho LN, Wong YS, Voon CH, Yusuf SY, et al.
    Environ Sci Pollut Res Int, 2016 Aug;23(16):16716-21.
    PMID: 27184147 DOI: 10.1007/s11356-016-6840-9
    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration.
    Matched MeSH terms: Photochemical Processes*
  4. Lai JI, Yusoff FM, Shariff M
    Pak J Biol Sci, 2012 Jul 01;15(13):635-40.
    PMID: 24218933
    Outdoor mass culture of microalgae in the tropical area is important to minimize its production cost. This study evaluates the growth of Chaetoceros calcitrans in 120 L annular photobioreactors at indoor temperature (Treatment I, 25 +/- 2 degrees C) and outdoor tropical ambient temperature, (Treatment II, 30 +/- 6 degrees C). Each treatment was done in duplicates. For both treatments, C. calcitrans was first grown in starter columns of 10 L capacity for a period of 7 days at 25 +/- 2 degrees C. After 7 days, the 9 L culture was transferred to the annular photobioreactors and subsequently brought to a final volume of 100 L by adding 20 L fresh medium every 5 days. There was no significant difference (p > 0.05) in the dry weight of microalgae grown in natural light and those grown indoor. The results suggest that C. calcitrans can be grown in outdoor conditions, hence, saving time and microalgae production cost for the larviculture industry.
    Matched MeSH terms: Photochemical Processes*
  5. Abdollahi Y, Zakaria A, Sairi NA, Matori KA, Masoumi HR, Sadrolhosseini AR, et al.
    ScientificWorldJournal, 2014;2014:726101.
    PMID: 25538962 DOI: 10.1155/2014/726101
    The artificial neural network (ANN) modeling of m-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration of m-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software's option. To obtain the optimum topologies, ANN was trained by quick propagation (QP), Incremental Back Propagation (IBP), Batch Back Propagation (BBP), and Levenberg-Marquardt (LM) algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE) for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work.
    Matched MeSH terms: Photochemical Processes*
  6. Tan ST, Ali Umar A, Balouch A, Nafisah S, Yahaya M, Yap CC, et al.
    ACS Comb Sci, 2014 Jul 14;16(7):314-20.
    PMID: 24919039 DOI: 10.1021/co400157m
    This Research Article reports an unusually high efficiency heterogeneous photodegradation of methyl orange (MO) in the presence of Ag nanoparticle-loaded ZnO quasi-nanotube or nanoreactor (A-ZNRs) nanocatalyst grown on FTO substrate. In typical process, photodegradation efficiency of as high as 21.6% per μg per Watts of used catalyst and UV power can be normally obtained within only a 60-min reaction time from this system, which is 10(3) order higher than the reported results. This is equivalent to the turnover frequency of 360 mol mol(-1) h(-1). High-density hexagonal A-ZNRs catalysts were grown directly on FTO substrate via a seed-mediated microwave-assisted hydrolysis growth process utilizing Ag nanoparticle of approximately 3 nm in size as nanoseed and mixture aqueous solution of Zn(NO3)·6H2O, hexamethylenetetramine (HMT), and AgNO3 as the growth solution. A-ZNRs adopts hexagonal cross-section morphology with the inner surface of the reactor characterized by a rough and rugged structure. Transmission electron microscopy imaging shows the Ag nanoparticle grows interstitially in the ZnO nanoreactor structure. The high photocatalytic property of the A-ZNRs is associated with the highly active of inner side's surface of A-ZNRs and the oxidizing effect of Ag nanoparticle. The growth mechanism as well as the mechanism of the enhanced-photocatalytic performance of the A-ZNRs will be discussed.
    Matched MeSH terms: Photochemical Processes*
  7. Abd Aziz SN, Pung SY, Ramli NN, Lockman Z
    ScientificWorldJournal, 2014;2014:252851.
    PMID: 24587716 DOI: 10.1155/2014/252851
    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I(uv)/I(vis) ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics.
    Matched MeSH terms: Photochemical Processes*
  8. Ong WJ, Tan LL, Chai SP, Yong ST, Mohamed AR
    ChemSusChem, 2014 Mar;7(3):690-719.
    PMID: 24532412 DOI: 10.1002/cssc.201300924
    Titanium dioxide (TiO2 ) is one of the most widely investigated metal oxides because of its extraordinary surface, electronic, and photocatalytic properties. However, the large band gap of TiO2 and the considerable recombination of photogenerated electron-hole pairs limit its photocatalytic efficiency. Therefore, research attention is being increasingly directed towards engineering the surface structure of TiO2 on the atomic level (namely morphological control of {001} facets on the micro- and nanoscale) to fine-tune its physicochemical properties; this could ultimately lead to the optimization of selectivity and reactivity. This Review encompasses the fundamental principles to enhance the photocatalytic activity by using highly reactive {001}-faceted TiO2 -based composites. The current progress of such composites, with particular emphasis on the photodegradation of pollutants and photocatalytic water splitting for hydrogen generation, is also discussed. The progresses made are thoroughly examined for achieving remarkable photocatalytic performances, with additional insights with regard to charge transfer. Finally, a summary and some perspectives on the challenges and new research directions for future exploitation in this emerging frontier are provided, which hopefully would allow for harnessing the outstanding structural and electronic properties of {001} facets for various energy- and environmental-related applications.
    Matched MeSH terms: Photochemical Processes*
  9. Tan LL, Chai SP, Mohamed AR
    ChemSusChem, 2012 Oct;5(10):1868-82.
    PMID: 22987439 DOI: 10.1002/cssc.201200480
    Graphene is one of the most promising materials in the field of nanotechnology and has attracted a tremendous amount of research interest in recent years. Due to its large specific surface area, high thermal conductivity, and superior electron mobility, graphene is regarded as an extremely attractive component for the preparation of composite materials. At the same time, the use of photocatalysts, particularly TiO(2), has also been widely studied for their potential in addressing various energy and environmental-related issues. However, bare TiO(2) suffers from low efficiency and a narrow light-response range. Therefore, the combination of graphene and TiO(2) is currently one of the most active interdisciplinary research areas and demonstrations of photocatalytic enhancement are abundant. This Review presents and discusses the current development of graphene-based TiO(2) photocatalysts. The theoretical framework of the composite, the synthetic strategies for the preparation and modification of graphene-based TiO(2) photocatalysts, and applications of the composite are reviewed, with particular attention on the photodegradation of pollutants and photocatalytic water splitting for hydrogen generation.
    Matched MeSH terms: Photochemical Processes*
  10. Mohamed MA, Abd Mutalib M, Mohd Hir ZA, M Zain MF, Mohamad AB, Jeffery Minggu L, et al.
    Int J Biol Macromol, 2017 Oct;103:1232-1256.
    PMID: 28587962 DOI: 10.1016/j.ijbiomac.2017.05.181
    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy.
    Matched MeSH terms: Photochemical Processes*
  11. Zhu T, Chong MN, Chan ES
    ChemSusChem, 2014 Nov;7(11):2974-97.
    PMID: 25274424 DOI: 10.1002/cssc.201402089
    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future.
    Matched MeSH terms: Photochemical Processes
  12. Zhang W, Mohamed AR, Ong WJ
    Angew Chem Int Ed Engl, 2020 Dec 14;59(51):22894-22915.
    PMID: 32009290 DOI: 10.1002/anie.201914925
    Transforming CO2 into fuels by utilizing sunlight is promising to synchronously overcome global warming and energy-supply issues. It is crucial to design efficient photocatalysts with intriguing features such as robust light-harvesting ability, strong redox potential, high charge-separation, and excellent durability. Hitherto, a single-component photocatalyst is incapable to simultaneously meet all these criteria. Inspired by natural photosynthesis, constructing artificial Z-scheme photocatalysts provides a facile way to conquer these bottlenecks. In this review, we firstly introduce the fundamentals of photocatalytic CO2 reduction and Z-scheme systems. Thereafter we discuss state-of-the-art Z-scheme photocatalytic CO2 reduction, whereby special attention is placed on the predominant factors that affect photoactivity. Additionally, further modifications that are important for efficient photocatalysis are reviewed.
    Matched MeSH terms: Photochemical Processes
  13. Lam SM, Wong SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Res, 2024 Nov 15;261:119718.
    PMID: 39096993 DOI: 10.1016/j.envres.2024.119718
    Devising of materials that afforded dual applicability in decontamination and pollutant detection were still a towering challenge owing to the increasing flux of discharge toxic contaminants over the years. Herein, the NiFe2O4 nanoparticles-loaded on cube-like SrTiO3 (NiFe2O4/SrTiO3) composite was fabricated by a two-step hydrothermal approach providing remarkable photocatalytic treatment and electrochemical sensing of noxious pollutants in wastewater. The material traits of the fabricated composite were scrutinized by myriad characterization approaches. The NiFe2O4/SrTiO3 hybrid material demonstrated high surface area of 19.81 m2/g, adequate band gap energy of 2.75 eV, and prominent photoluminescence characteristics. In the presence of visible light, the NiFe2O4/SrTiO3 exhibited profound photocatalysis capability to eliminate sewage effluent-bearing chlortetracycline hydrochloride (CTCH) with 88.6% COD removal in 120 min, outperforming other pure materials. Meanwhile, the toxicity examination of effluent, the possible degradation pathway of CTCH and the proposed photocatalysis mechanism were also divulged. More importantly, the glassy carbon electrode was modified with synergized NiFe2O4/SrTiO3 (NiFe2O4/SrTiO3-GCE) was adopted for the precise quantification of Hydrazine (Hz). The NiFe2O4/SrTiO3-GCE obeyed first-order response for the Hz detection within the range of 1-10 mM: cyclic voltametric: limit of detection (LOD) of 0.119 μM with sensitivity of 18.9 μA μM-1 cm-2, and linear sweep voltametric: LOD of 0.222 μM with a sensitivity of 12.05 μA μM-1 cm-2. The stability and interference of modified electrode were also inspected. This work furnished valuable insights to yield a composite with the prominent S-scheme heterojunction system for quenching of charge carrier recombination and consequently contributing to the future realization into the domains of environmental clean-up and toxic chemical detection.
    Matched MeSH terms: Photochemical Processes
  14. Lee DE, Husain A, Khan A, Danish M, Jo WK
    Environ Res, 2025 Jan 01;264(Pt 1):120367.
    PMID: 39549909 DOI: 10.1016/j.envres.2024.120367
    Integrating photocatalysis with electrocatalysis may represent a synergistic approach to address environmental and energy challenges. In this context, we explored synthesizing a series of nanocomposite materials using a solid-state approach involving simple grinding and subsequent thermal treatment for the photocatalytic purification of dinoseb and electrocatalytic oxygen evolution (OER). Interestingly, among the series of synthesized materials, 40 wt percentage of 3D/2D/1D:ZnFe2O4/NiAl-LDH/MWCNTs ternary nanocomposite (40-NZM) showed highly improved dinoseb detoxification and OER efficiencies compared to those of pure materials. Importantly, approximately 98% detoxification of dinoseb was observed within 75 min of irradiation time under a visible light source. Remarkably, the 40-NZM nanocomposite exhibited the highest rate constant value (k = 4.1 × 10-2 min-1) with a favorable R2 (0.98) parameter. Furthermore, 40-NZM showed promising electrocatalytic OER performance, requiring only 217 mV of overpotential to achieve 10 mAcm-2 of current density with a smaller Tafel slope of 66.6 mVdec-1. Additionally, long-term stability was tested by recording 2000 cyclic voltammetry (CV) cycles. The results revealed that 40-NZM could maintain its catalytic activity for a longer duration as it required only 227 mV to attain 10 mAcm-2 even after 2000 CV cycles. Consequently, these outstanding characteristics of 40-NZM nanocomposite underscore the significant potential for catalytic water purification and sustainable energy conversion.
    Matched MeSH terms: Photochemical Processes
  15. Ahmed S, Tan YH, Mubarak NM, Khalid M, Channa N, Karri RR, et al.
    Environ Res, 2025 Mar 01;268:120765.
    PMID: 39761786 DOI: 10.1016/j.envres.2025.120765
    Bismuth-based photocatalysts proved to have remarkable photoactivity for antibiotic degradation from water. However, the two significant challenges of bismuth-based photocatalysts are the fast charge recombination rate and higher energy band gap. This study successfully synthesised a novel I-Bi/Bi2WO6/MWCNTs (C-WBI) heterostructure composite photocatalysts with shorter energy band-gap and higher charge production capability through interfacial amidation linkage. The photochemical characterization of C-WBI confirms that the interfacial linkage between MWNCTs and I-Bi/Bi2WO6 (WBI) significantly boosted the charge production capacity and broadened visible-light harvesting (508 nm), resulting in improved photocatalytic activity. As anticipated, optimized 7%C-WBI shows remarkable adsorption and photocatalytic activity for TC removal compared to pristine WBI (2.27 times) under visible light. TC removal was enhanced to 96.75% from 71.58% (WBI) at mild operating conditions of pH 8, photocatalyst loading of 20 mg, and an initial TC concentration of 20 mg/l. Adsorption equilibrium was best fitted to Langmuir isotherm and pseudo-first-order kinetics with R2 of 0.998 and 0.997, respectively. In contrast, the photodegradation of TC is best described by pseudo-first-order kinetics with a correlation coefficient of 0.99 and a reaction rate of kobs of 0.0205 min-1. The effect of co-existing ions (Cl-, SO₄2⁻ and HCO₃⁻) reveals that the presence of Cl- notably inhibited the photocatalytic reaction rate, reducing it to 0.0161min⁻1. Quenching experiments identified •O₂⁻ and h⁺ radicals as key contributors to TC degradation, accounting for 63.02% and 60.8%, respectively. Furthermore, 7%C-WBI demonstrated outstanding reusability (82.05%) over 5 consecutive cycles with no obvious changes, thereby confirming the stability of the synthesised composite photocatalysts.
    Matched MeSH terms: Photochemical Processes
  16. Saepurahman, Abdullah MA, Chong FK
    J Hazard Mater, 2010 Apr 15;176(1-3):451-8.
    PMID: 19969415 DOI: 10.1016/j.jhazmat.2009.11.050
    Tungsten-loaded TiO(2) photocatalyst has been successfully prepared and characterized. TEM analysis showed that the photocatalysts were nanosize with the tungsten species forming layers of coverage on the surface of TiO(2), but not in clustered form. This was confirmed by XRD and FT-Raman analyses where tungsten species were well dispersed at lower loading (<6.5 mol%), but were in crystalline WO(3) at higher loadings (>12 mol%). In addition, loading with tungsten could stabilize the anatase phase from transforming into inactive rutile phase and did not shift the optical absorption to the visible region as shown by DRUV-vis analysis. PZC value of TiO(2) was found at 6.4, but the presence of tungsten at 6.5 mol% WO(3), decreased the PZC value to 3. Tungsten-loaded TiO(2) was superior to unmodified TiO(2) with 2-fold increase in degradation rate of methylene blue, and equally effective for the degradation of different class of dyes such as methyl violet and methyl orange at 1 mol% WO(3) loading.
    Matched MeSH terms: Photochemical Processes*
  17. Samrat NH, Ahmad N, Choudhury IA, Taha Z
    PLoS One, 2015;10(6):e0130678.
    PMID: 26121032 DOI: 10.1371/journal.pone.0130678
    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.
    Matched MeSH terms: Photochemical Processes*
  18. Hu J, Lin S, Tan BK, Hamzah SS, Lin Y, Kong Z, et al.
    Food Res Int, 2018 09;111:265-271.
    PMID: 30007685 DOI: 10.1016/j.foodres.2018.05.042
    Burkholderia cepacia (B. cepacia) is an aerobic Gram-negative bacillus found in various aquatic environments and can cause food contamination. We investigated the photodynamic antibacterial effects of food additive curcumin combined with EDTA on B. cepacia. We found a ~4-log reduction in B. cepacia viability when photo-irradiated with curcumin at 50 μM by blue LED light (16 mW/cm2) for 30 min with 0.4% (w/v) EDTA. Moreover, the bacterial morphological alterations and the leakage of intracellular contents were observed after photodynamic treatment. There were also obvious genomic DNA cleavage and a general loss of bacterial proteins assigned to large-scale protein degradation after photodynamic inactivation treatment. Collectively, curcumin in combination with EDTA illuminated by blue LED is a potential candidate for photodynamic inactivation of B. cepacia.
    Matched MeSH terms: Photochemical Processes*
  19. Saqib NU, Adnan R, Shah I
    Environ Sci Pollut Res Int, 2016 Aug;23(16):15941-51.
    PMID: 27335012 DOI: 10.1007/s11356-016-6984-7
    Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst.
    Matched MeSH terms: Photochemical Processes*
  20. Loi E, Ng RW, Chang MM, Fong JF, Ng YH, Ng SM
    Luminescence, 2017 Feb;32(1):114-118.
    PMID: 27166514 DOI: 10.1002/bio.3157
    Carbon dots, a new class of nanomaterial with unique optical property and have great potential in various applications. This work demonstrated the possibility of tuning the emission wavelength of carbon dots by simply changing the acid type used during synthesis. In particular, sulfuric and phosphoric acids and a mixture of the two were used to carbonize the same starting precursor, sucrose. This resulted in the isolation of carbon dots with blue (440 nm) and green (515 nm) emission. Interestingly, the use of an acid mixture at various ratios did not shift the initial emission profile, but did obviously alter the fluorescence efficiency of the peaks. This clearly showed that acid type can be used as an alternative tool to produce carbon dots that have different emissions using the same starting precursor. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Photochemical Processes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links