Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Al-Nema MY, Gaurav A
    Curr Top Med Chem, 2019;19(7):555-564.
    PMID: 30931862 DOI: 10.2174/1568026619666190401113803
    BACKGROUND: Phosphodiesterases (PDEs) are enzymes that play a key role in terminating cyclic nucleotides signalling by catalysing the hydrolysis of 3', 5'- cyclic adenosine monophosphate (cAMP) and/or 3', 5' cyclic guanosine monophosphate (cGMP), the second messengers within the cell that transport the signals produced by extracellular signalling molecules which are unable to get into the cells. However, PDEs are proteins which do not operate alone but in complexes that made up of a many proteins.

    OBJECTIVE: This review highlights some of the general characteristics of PDEs and focuses mainly on the Protein-Protein Interactions (PPIs) of selected PDE enzymes. The objective is to review the role of PPIs in the specific mechanism for activation and thereby regulation of certain biological functions of PDEs.

    METHODS: The article discusses some of the PPIs of selected PDEs as reported in recent scientific literature. These interactions are critical for understanding the biological role of the target PDE.

    RESULTS: The PPIs have shown that each PDE has a specific mechanism for activation and thereby regulation a certain biological function.

    CONCLUSION: Targeting of PDEs to specific regions of the cell is based on the interaction with other proteins where each PDE enzyme binds with specific protein(s) via PPIs.

    Matched MeSH terms: Protein Interaction Domains and Motifs/physiology*
  2. Lee YH, Pang SW, Poh CL, Tan KO
    J Cancer Res Clin Oncol, 2016 Sep;142(9):1967-77.
    PMID: 27424190 DOI: 10.1007/s00432-016-2205-5
    PURPOSE: Members of paraneoplastic Ma (PNMA) family have been identified as onconeuronal antigens, which aberrant expressions in cancer cells of patients with paraneoplastic disorder (PND) are closely linked to manifestation of auto-immunity, neuro-degeneration, and cancer. The purpose of present study was to determine the role of PNMA5 and its functional relationship to MOAP-1 (PNMA4) in human cancer cells.

    METHODS: PNMA5 mutants were generated through deletion or site-directed mutagenesis and transiently expressed in human cancer cell lines to investigate their role in apoptosis, subcellular localization, and potential interaction with MOAP-1 through apoptosis assays, fluorescence microscopy, and co-immunoprecipitation studies, respectively.

    RESULTS: Over-expressed human PNMA5 exhibited nuclear localization pattern in both MCF-7 and HeLa cells. Deletion mapping and mutagenesis studies showed that C-terminus of PNMA5 is responsible for nuclear localization, while the amino acid residues (391KRRR) within the C-terminus of PNMA5 are required for nuclear targeting. Deletion mapping and co-immunoprecipitation studies showed that PNMA5 interacts with MOAP-1 and N-terminal domain of PNMA5 is required for interaction with MOAP-1. Furthermore, co-expression of PNMA5 and MOAP-1 in MCF-7 cells significantly enhanced chemo-sensitivity of MCF-7 to Etoposide treatment, indicating that PNMA5 and MOAP-1 interact synergistically to promote apoptotic signaling in MCF-7 cells.

    CONCLUSIONS: Our results show that PNMA5 promotes apoptosis signaling in HeLa and MCF-7 cells and interacts synergistically with MOAP-1 through its N-terminal domain to promote apoptosis and chemo-sensitivity in human cancer cells. The C-terminal domain of PNMA5 is required for nuclear localization; however, both N-and C-terminal domains of PNMA5 appear to be required for pro-apoptotic function.

    Matched MeSH terms: Protein Interaction Domains and Motifs/genetics; Protein Interaction Domains and Motifs/physiology*
  3. Molouki A, Hsu YT, Jahanshiri F, Abdullah S, Rosli R, Yusoff K
    Virol J, 2011;8:385.
    PMID: 21810274 DOI: 10.1186/1743-422X-8-385
    The underlying mechanisms by which Newcastle disease virus (NDV) kills cancer cells are still unclear. Recent discoveries have shown that many viruses contain Bcl-2 homology-like domains which enabled their interaction with Bcl-2 family members, and thereby accounting for their virulence and pathogenicity. Alignment of the protein sequences of Malaysian strain of NDV, known as AF2240, with those from members of the human Bcl-2 family showed many similar regions; most notably we found that its matrix (AF2240-M) protein, large (AF2240-L) protein and fusion (AF2240-F) protein all contain BH3-like regions. In addition, there are BH1-like domains in these proteins, where AF2240-F and Mcl-1 share 55% identity within this region. To further investigate our hypothesis that the presence of the BH3-like domains in these proteins may convey cytotoxicity, AF2240-M and AF2240-F genes were cloned into pFLAG and pEGFP.N2 vectors and transfected into HeLa cells. The expression of these constructs promoted cell death. As shown by flow cytometry, AF2240-M protein with deleted BH3-like region showed five-fold decrease in apoptosis. Moreover, the construct containing the N-terminal of AF2240-M showed nearly the same cell death rate as to that of the full-length protein, strongly suggesting that the BH3-like domain within this protein participates in promoting cell death. Moreover, AF2240-M transfection promoted Bax redistribution to mitochondria. Therefore, to determine whether there is any direct interaction between NDV viral proteins with some members of the Bcl-2 family, various constructs were co-transfected into HeLa cells. Co-immunoprecipitation trials showed that the AF2240-M indeed directly interacted with Bax protein via its BH3-domain, as the mutant proteins failed to interact with Bax. AF2240-F failed to interact with any of the tested proteins, although Bcl-XL slowed down the rate of cell death caused by this construct by nearly five-fold. In a parallel experiment, the level of expression of endogenous Bax and Bcl-2 after infection of HeLa cells with NDV was assessed by qRT-PCR, but no statistically significant change was observed. Consequently, the Bax/Bcl-2 ratio at the mRNA level did not alter. Overall, our study has shed additional light into the mechanisms by which NDV induces apoptosis.
    Matched MeSH terms: Protein Interaction Domains and Motifs*
  4. Roslan R, Othman RM, Shah ZA, Kasim S, Asmuni H, Taliba J, et al.
    Comput Biol Med, 2010 Jun;40(6):555-64.
    PMID: 20417930 DOI: 10.1016/j.compbiomed.2010.03.009
    Protein-protein interactions (PPIs) play a significant role in many crucial cellular operations such as metabolism, signaling and regulations. The computational methods for predicting PPIs have shown tremendous growth in recent years, but problem such as huge false positive rates has contributed to the lack of solid PPI information. We aimed at enhancing the overlap between computational predictions and experimental results in an effort to partially remove PPIs falsely predicted. The use of protein function predictor named PFP() that are based on shared interacting domain patterns is introduced in this study with the purpose of aiding the Gene Ontology Annotations (GOA). We used GOA and PFP() as agents in a filtering process to reduce false positive pairs in the computationally predicted PPI datasets. The functions predicted by PFP() were extracted from cross-species PPI data in order to assign novel functional annotations for the uncharacterized proteins and also as additional functions for those that are already characterized by the GO (Gene Ontology). The implementation of PFP() managed to increase the chances of finding matching function annotation for the first rule in the filtration process as much as 20%. To assess the capability of the proposed framework in filtering false PPIs, we applied it on the available S. cerevisiae PPIs and measured the performance in two aspects, the improvement made indicated as Signal-to-Noise Ratio (SNR) and the strength of improvement, respectively. The proposed filtering framework significantly achieved better performance than without it in both metrics.
    Matched MeSH terms: Protein Interaction Domains and Motifs*
  5. Saadah LM, Deiab GIA, Al-Balas Q, Basheti IA
    Molecules, 2020 Nov 28;25(23).
    PMID: 33260592 DOI: 10.3390/molecules25235605
    AIMS: Angiotensin-converting enzyme 2 (ACE2) plays an important role in the entry of coronaviruses into host cells. The current paper described how carnosine, a naturally occurring supplement, can be an effective drug candidate for coronavirus disease (COVID-19) on the basis of molecular docking and modeling to host ACE2 cocrystallized with nCoV spike protein.

    METHODS: First, the starting point was ACE2 inhibitors and their structure-activity relationship (SAR). Next, chemical similarity (or diversity) and PubMed searches made it possible to repurpose and assess approved or experimental drugs for COVID-19. Parallel, at all stages, the authors performed bioactivity scoring to assess potential repurposed inhibitors at ACE2. Finally, investigators performed molecular docking and modeling of the identified drug candidate to host ACE2 with nCoV spike protein.

    RESULTS: Carnosine emerged as the best-known drug candidate to match ACE2 inhibitor structure. Preliminary docking was more optimal to ACE2 than the known typical angiotensin-converting enzyme 1 (ACE1) inhibitor (enalapril) and quite comparable to known or presumed ACE2 inhibitors. Viral spike protein elements binding to ACE2 were retained in the best carnosine pose in SwissDock at 1.75 Angstroms. Out of the three main areas of attachment expected to the protein-protein structure, carnosine bound with higher affinity to two compared to the known ACE2 active site. LibDock score was 92.40 for site 3, 90.88 for site 1, and inside the active site 85.49.

    CONCLUSION: Carnosine has promising inhibitory interactions with host ACE2 and nCoV spike protein and hence could offer a potential mitigating effect against the current COVID-19 pandemic.

    Matched MeSH terms: Protein Interaction Domains and Motifs/drug effects
  6. Chen YM, Chen LH, Li MP, Li HF, Higuchi A, Kumar SS, et al.
    Sci Rep, 2017 03 23;7:45146.
    PMID: 28332572 DOI: 10.1038/srep45146
    Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.
    Matched MeSH terms: Protein Interaction Domains and Motifs
  7. Dawson NL, Sillitoe I, Lees JG, Lam SD, Orengo CA
    Methods Mol Biol, 2017;1558:79-110.
    PMID: 28150234 DOI: 10.1007/978-1-4939-6783-4_4
    This chapter describes the generation of the data in the CATH-Gene3D online resource and how it can be used to study protein domains and their evolutionary relationships. Methods will be presented for: comparing protein structures, recognizing homologs, predicting domain structures within protein sequences, and subclassifying superfamilies into functionally pure families, together with a guide on using the webpages.
    Matched MeSH terms: Protein Interaction Domains and Motifs
  8. Delom F, Mohtar MA, Hupp T, Fessart D
    Am. J. Physiol., Cell Physiol., 2020 01 01;318(1):C40-C47.
    PMID: 31644305 DOI: 10.1152/ajpcell.00532.2018
    The anterior gradient-2 (AGR2) is an endoplasmic reticulum (ER)-resident protein belonging to the protein disulfide isomerase family that mediates the formation of disulfide bonds and assists the protein quality control in the ER. In addition to its role in proteostasis, extracellular AGR2 is responsible for various cellular effects in many types of cancer, including cell proliferation, survival, and metastasis. Various OMICs approaches have been used to identify AGR2 binding partners and to investigate the functions of AGR2 in the ER and outside the cell. Emerging data showed that AGR2 exists not only as monomer, but it can also form homodimeric structure and thus interact with different partners, yielding different biological outcomes. In this review, we summarize the AGR2 "interactome" and discuss the pathological and physiological role of such AGR2 interactions.
    Matched MeSH terms: Protein Interaction Domains and Motifs
  9. Bui NN, Lin YT, Huang SH, Lin CW
    Infect Genet Evol, 2022 01;97:105164.
    PMID: 34848355 DOI: 10.1016/j.meegid.2021.105164
    The widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continuously impacts our economic and public health. The potential of emerging variants to increase transmissibility and evade vaccine-induced immunity lets us put more effort to research on viral mutations and explore the pathogenic haplotypes. In this study, we characterized the haplotype and sub-haplotype diversity of SARS-CoV-2 global variants in January-March and the areas with low and high COVID19 vaccination rates in May 2021 by analyzing viral proteome of complete genome sequences published. Phylogenetic tree analysis of the proteomes of SARS-CoV-2 variants with Neighbor-Joining and Maximum Parsimony methods indicated that haplotype 2 variant with nsp12 P323L and Spike D614G was dominant (98.81%), including new sub-haplotypes 2A_1 to 2A_3, 2B_1 to 2B_3, and 2C_1 to 2C_2 emerged post-one-year COVID-19 outbreak. In addition, the profiling of sub-haplotypes indicated that sub-haplotype 2A_1 with the mutations at N501Y, A570D, D614G, P681H, T716I, S982A, and D118H in Spike was over 58% in May 2021 in the high partly vaccinated rate group (US, Canada, and Germany). Meanwhile, the new haplotype 2C_3 bearing the mutations at EFR156-158del, T19R, A222V, L452R, T478K, and D614G in Spike occupied over 54.8% in May 2021 in the low partly vaccinated rate group (India, Malaysia, Taiwan, and Vietnam). Sub-haplotypes 2A_1 and 2C_3 had a meaningful alternation of ACE2-specific recognition site, neutralization epitopes, and furin cleavage site in SARS-CoV-2 Spike protein. The results discovered the haplotype diversity and new sub-haplotypes of SARS-CoV-2 variants post one-year pandemic in January-March 2021, showing the profiles of sub-haplotypes in the groups with low and high partly vaccinated rates in May 2021. The study reports the emergence of new SARS-CoV-2 sub-haplotypes during ongoing pandemic and vaccination in early 2021, which might help inform the response to vaccination strategies.
    Matched MeSH terms: Protein Interaction Domains and Motifs
  10. Lee YH, Pang SW, Revai Lechtich E, Shah K, Simon SE, Ponnusamy S, et al.
    J Cancer Res Clin Oncol, 2020 Jul;146(7):1751-1764.
    PMID: 32377840 DOI: 10.1007/s00432-020-03231-9
    PURPOSE: Although important for apoptosis, the signaling pathway involving MOAP-1(Modulator of Apoptosis 1), RASSF1A (RAS association domain family 1A), and Bax (Bcl-2 associated X protein) is likely to be dysfunctional in many types of human cancers due to mechanisms associated with gene mutation and DNA hyper-methylation. The purpose of the present study was to assess the potential impact of generating physiologically relevant signaling pathway mediated by MOAP-1, Bax, and RASSF1A (MBR) in cancer cells and chemo-drug resistant cancer cells.

    METHODS: The tricistronic expression construct that encodes MOAP-1, Bax, and RASSF1A (MBR) or its mutant, MOAP-1∆BH3L, Bax and RASSF1A (MBRX) was expressed from an IRES (Internal Ribosome Entry Site)-based tricistronic expression vector in human breast cancer cells, including MCF-7, MCF-7-CR (cisplatin resistant) and triple negative breast cancer cells, BMET05, for functional characterization through in vitro and in vivo models.

    RESULTS: Transient expression of MBR potently promoted dose-dependent apoptotic signaling and chemo-sensitization in the cancer cells, as evidenced by loss of cell viability, nuclei condensation and Annexin-V positive staining while stable expression of MBR in MCF-7 cells significantly reduced the number of MBR stable clone by 86% and the stable clone exhibited robust chemo-drug sensitivity. In contrast, MBRX stable clone exhibited chemo-drug resistance while transiently over-expressed MOAP-1ΔBH3L inhibited the apoptotic activity of MBR. Moreover, the spheroids derived from the MBR stable clone displayed enhanced chemo-sensitivity and apoptotic activity. In mouse xenograft model, the tumors derived from MBR stable clone showed relatively high level of tumor growth retardation associated with the increase in apoptotic activity, leading to the decreases in both tumor weight and volume.

    CONCLUSIONS: Expression of MBR in cancer cells induces apoptotic cell death with enhanced chemo-sensitization requiring the BH3L domain of MOAP-1. In animal model, the expression of MBR significantly reduces the growth of tumors, suggesting that MBR is a potent apoptotic sensitizer with potential therapeutic benefits for cancer treatment.

    Matched MeSH terms: Protein Interaction Domains and Motifs*
  11. Oh L, Hainaut P, Blanchet S, Ariffin H
    BMC Cancer, 2020 Feb 10;20(1):110.
    PMID: 32041553 DOI: 10.1186/s12885-020-6599-8
    BACKGROUND: TP53 mutations occur in only about 3% of primary and 10-20% of relapse B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). However, alternative mechanisms may contribute to functionally impairing the p53 pathway in the absence of a mutation. Candidate mechanisms include overexpression of p53 mRNA variants encoding either dominant-negative p53 protein isoforms such as Delta40p53 and Delta133p53, or modulatory isoforms such as p53beta, which counteract the effects of Delta133p53 on replicative senescence in T-lymphocytes.

    METHODS: We used semi-quantitative reverse-transcriptase PCR (RT-PCR) and Western blot to investigate the expression of full length p53 (TAp53), Delta40p53, Delta133p53 or p53beta in diagnostic marrow from a clinical cohort of 50 BCP-ALL patients without TP53 mutation (29 males and 21 females, age range 2-14 years) and in the bone marrow cells of 4 healthy donors (used as controls).

    RESULTS: Irrespective of isoforms, levels of p53 mRNA were low in controls but were increased by 2 to 20-fold in primary or relapse BCP-ALL. TAp53 was increased in primary BCP-ALL, Delta40p53 was elevated in relapse BCP-ALL, whereas Delta133p53 and p53beta were increased in both. Next, mRNA levels were used as a basis to infer the ratio between protein isoform levels. This inference suggested that, in primary BCP-ALL, p53 was predominantly in active oligomeric conformations dominated by TAp53. In contrast, p53 mostly existed in inactive quaternary conformations containing ≥2 Delta40 or Delta133p53 in relapse BCP-ALL. Western blot analysis of blasts from BCP-ALL showed a complex pattern of N-terminally truncated p53 isoforms, whereas TAp53beta was detected as a major isoform. The hypothesis that p53 is in an active form in primary B-ALL was consistent with elevated level of p53 target genes CDKN1A and MDM2 in primary cases, whereas in relapse BCP-ALL, only CDKN1A was increased as compared to controls.

    CONCLUSION: Expression of p53 isoforms is deregulated in BCP-ALL in the absence of TP53 mutation, with increased expression of alternative isoforms in relapse BCP-ALL. Variations in isoform expression may contribute to functional deregulation of the p53 pathway in BCP-ALL, specifically contributing to its down-regulation in relapse forms.

    Matched MeSH terms: Protein Interaction Domains and Motifs/genetics*
  12. Nor Rashid N, Yong ZL, Yusof R, Watson RJ
    Virol J, 2016 Jan 04;13:2.
    PMID: 26728921 DOI: 10.1186/s12985-015-0460-8
    Retinoblastoma like protein 2 (RBL2) or p130 is a member of the pocket protein family, which is infrequently mutated in human tumours. Its expression is posttranscriptionally regulated and largely G0 restricted. We have previously shown that E6/E7 oncoproteins encoded by human papillomavirus (HPV) type 16, which is a high-risk type for cervical cancer development, must target p130 to promote the host cell to exit from quiescence (G0) state and enter S phase of the cell cycle. P130 is associated with the DREAM (DP, RB-like, E2F and MuvB) complex in G0/G1, which prevents S phase progression by repressing transcription of E2F-regulated genes. E7 proteins could potentially disrupt the p130-DREAM complex through two known mechanisms: direct interaction with p130 or induction of cyclin dependent kinase 2 (CDK2) phosphorylation by interacting with its inhibitor, p21(CIP1).
    Matched MeSH terms: Protein Interaction Domains and Motifs
  13. Kumar S, Fazil MHUT, Ahmad K, Tripathy M, Rajapakse JC, Verma NK
    Methods Mol Biol, 2019;1930:149-156.
    PMID: 30610609 DOI: 10.1007/978-1-4939-9036-8_18
    Analysis of protein-protein interactions is important for better understanding of molecular mechanisms involved in immune regulation and has potential for elaborating avenues for drug discovery targeting T-cell motility. Currently, only a small fraction of protein-protein interactions have been characterized in T-lymphocytes although there are several detection methods available. In this regard, computational approaches garner importance, with the continued explosion of genomic and proteomic data, for handling protein modeling and protein-protein interactions in large scale. Here, we describe a computational method to identify protein-protein interactions based on in silico protein design.
    Matched MeSH terms: Protein Interaction Domains and Motifs
  14. McGuffin LJ, Adiyaman R, Maghrabi AHA, Shuid AN, Brackenridge DA, Nealon JO, et al.
    Nucleic Acids Res, 2019 07 02;47(W1):W408-W413.
    PMID: 31045208 DOI: 10.1093/nar/gkz322
    The IntFOLD server provides a unified resource for the automated prediction of: protein tertiary structures with built-in estimates of model accuracy (EMA), protein structural domain boundaries, natively unstructured or disordered regions in proteins, and protein-ligand interactions. The component methods have been independently evaluated via the successive blind CASP experiments and the continual CAMEO benchmarking project. The IntFOLD server has established its ranking as one of the best performing publicly available servers, based on independent official evaluation metrics. Here, we describe significant updates to the server back end, where we have focused on performance improvements in tertiary structure predictions, in terms of global 3D model quality and accuracy self-estimates (ASE), which we achieve using our newly improved ModFOLD7_rank algorithm. We also report on various upgrades to the front end including: a streamlined submission process, enhanced visualization of models, new confidence scores for ranking, and links for accessing all annotated model data. Furthermore, we now include an option for users to submit selected models for further refinement via convenient push buttons. The IntFOLD server is freely available at: http://www.reading.ac.uk/bioinf/IntFOLD/.
    Matched MeSH terms: Protein Interaction Domains and Motifs
  15. Balakumar P, Jagadeesh G
    J. Mol. Endocrinol., 2014 Oct;53(2):R71-92.
    PMID: 25013233 DOI: 10.1530/JME-14-0125
    The renin-angiotensin system (RAS) plays an important role in the pathophysiology of cardiovascular disorders. Pharmacologic interventions targeting the RAS cascade have led to the discovery of renin inhibitors, angiotensin-converting enzyme inhibitors, and AT(1) receptor blockers (ARBs) to treat hypertension and some cardiovascular and renal disorders. Mutagenesis and modeling studies have revealed that differential functional outcomes are the results of multiple active states conformed by the AT(1) receptor upon interaction with angiotensin II (Ang II). The binding of agonist is dependent on both extracellular and intramembrane regions of the receptor molecule, and as a consequence occupies more extensive area of the receptor than a non-peptide antagonist. Both agonist and antagonist bind to the same intramembrane regions to interfere with each other's binding to exhibit competitive, surmountable interaction. The nature of interactions with the amino acids in the receptor is different for each of the ARBs given the small differences in the molecular structure between drugs. AT(1) receptors attain different conformation states after binding various Ang II analogues, resulting in variable responses through activation of multiple signaling pathways. These include both classical and non-classical pathways mediated through growth factor receptor transactivations, and provide cross-communication between downstream signaling molecules. The structural requirements for AT(1) receptors to activate extracellular signal-regulated kinases 1 and 2 through G proteins, or G protein-independently through β-arrestin, are different. We review the structural and functional characteristics of Ang II and its analogs and antagonists, and their interaction with amino acid residues in the AT(1) receptor.
    Matched MeSH terms: Protein Interaction Domains and Motifs
  16. Wongrattanakamon P, Lee VS, Nimmanpipug P, Sirithunyalug B, Chansakaow S, Jiranusornkul S
    Toxicol. Mech. Methods, 2017 May;27(4):253-271.
    PMID: 27996361 DOI: 10.1080/15376516.2016.1273428
    In this work, molecular docking, pharmacophore modeling and molecular dynamics (MD) simulation were rendered for the mouse P-glycoprotein (P-gp) (code: 4Q9H) and bioflavonoids; amorphigenin, chrysin, epigallocatechin, formononetin and rotenone including a positive control; verapamil to identify protein-ligand interaction features including binding affinities, interaction characteristics, hot-spot amino acid residues and complex stabilities. These flavonoids occupied the same binding site with high binding affinities and shared the same key residues for their binding interactions and the binding region of the flavonoids was revealed that overlapped the ATP binding region with hydrophobic and hydrophilic interactions suggesting a competitive inhibition mechanism of the compounds. Root mean square deviations (RMSDs) analysis of MD trajectories of the protein-ligand complexes and NBD2 residues, and ligands pointed out these residues were stable throughout the duration of MD simulations. Thus, the applied preliminary structure-based molecular modeling approach of interactions between NBD2 and flavonoids may be gainful to realize the intimate inhibition mechanism of P-gp at NBD2 level and on the basis of the obtained data, it can be concluded that these bioflavonoids have the potential to cause herb-drug interactions or be used as lead molecules for the inhibition of P-gp (as anti-multidrug resistance agents) via the NBD2 blocking mechanism in future.
    Matched MeSH terms: Protein Interaction Domains and Motifs
  17. Ho KL, Gabrielsen M, Beh PL, Kueh CL, Thong QX, Streetley J, et al.
    PLoS Biol, 2018 Oct;16(10):e3000038.
    PMID: 30346944 DOI: 10.1371/journal.pbio.3000038
    Macrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, and thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here, we present an atomic-resolution model of the MrNV capsid protein (CP), calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional (3D) image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure, confirming the biological relevance of the VLP structure. Our data revealed that unlike other known nodavirus structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T = 3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae: 1) an extensive network of N-terminal arms (NTAs) lines the capsid interior, forming long-range interactions to lace together asymmetric units; 2) the capsid shell is stabilised by 3 pairs of Ca2+ ions in each asymmetric unit; 3) the protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the taxonomic classification of MrNV.
    Matched MeSH terms: Protein Interaction Domains and Motifs
  18. Heim A, Grimm C, Müller U, Häußler S, Mackeen MM, Merl J, et al.
    Nucleic Acids Res, 2014 Jul;42(12):7833-50.
    PMID: 24914048 DOI: 10.1093/nar/gku488
    The Fe(II) and 2-oxoglutarate dependent oxygenase Jmjd6 has been shown to hydroxylate lysine residues in the essential splice factor U2 auxiliary factor 65 kDa subunit (U2AF65) and to act as a modulator of alternative splicing. We describe further evidence for the role of Jmjd6 in the regulation of pre-mRNA processing including interactions of Jmjd6 with multiple arginine-serine-rich (RS)-domains of SR- and SR-related proteins including U2AF65, Luc7-like protein 3 (Luc7L3), SRSF11 and Acinus S', but not with the bona fide RS-domain of SRSF1. The identified Jmjd6 target proteins are involved in different mRNA processing steps and play roles in exon dependent alternative splicing and exon definition. Moreover, we show that Jmjd6 modifies splicing of a constitutive splice reporter, binds RNA derived from the reporter plasmid and punctually co-localises with nascent RNA. We propose that Jmjd6 exerts its splice modulatory function by interacting with specific SR-related proteins during splicing in a RNA dependent manner.
    Matched MeSH terms: Protein Interaction Domains and Motifs
  19. Mahita J, Harini K, Rao Pichika M, Sowdhamini R
    J Biomol Struct Dyn, 2016 Jun;34(6):1345-62.
    PMID: 26264972 DOI: 10.1080/07391102.2015.1079243
    Precise functioning and fine-tuning of Toll-like receptor 4 (TLR4) signaling is a critical requirement for the smooth functioning of the innate immune system, since aberrant TLR4 activation causes excessive production of pro-inflammatory cytokines and interferons. This can result in life threatening conditions such as septic shock and other inflammatory disorders. The TRIF-related adaptor molecule (TRAM) adaptor protein is unique to the TLR4 signaling pathway and abrogation of TRAM-mediated TLR4 signaling is a promising strategy for developing therapeutics aimed at disrupting TRAM interactions with other components of the TLR4 signaling complex. The VIPER motif from the vaccinia virus-producing protein, A46 has been reported to disrupt TRAM-TLR4 interactions. We have exploited this information, in combination with homology modeling and docking approaches, to identify a potential binding site on TRAM lined by the BB loop and αC helix. Virtual screening of commercially available small molecules targeting the binding site enabled to short-list 12 small molecules to abrogate TRAM-mediated TLR4 signaling. Molecular dynamics and molecular mechanics calculations have been performed for the analysis of these receptor-ligand interactions.
    Matched MeSH terms: Protein Interaction Domains and Motifs
  20. Choong YS, Lim TS, Chew AL, Aziah I, Ismail A
    J Mol Graph Model, 2011 Apr;29(6):834-42.
    PMID: 21371926 DOI: 10.1016/j.jmgm.2011.01.008
    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test.
    Matched MeSH terms: Protein Interaction Domains and Motifs
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links