Displaying all 15 publications

Abstract:
Sort:
  1. Komala I, Rahmani M, Sukari MA, Mohd Ismail HB, Cheng Lian GE, Rahmat A
    Nat Prod Res, 2006 Apr;20(4):355-60.
    PMID: 16644530
    Investigation on the leaves of Melicope bonwickii (F.Muell.) T.Hartley (Rutaceae) afforded a new 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (1) together with the known 7-(2',3'-epoxyprenyloxy)-4-methoxyfuroquinoline (2), evellerine (3) kokusaginine (4) and an amide aurantiamide acetate (5). Compounds 1 and 2 showed significant activity against cervical cell lines (Hela).
    Matched MeSH terms: Quinolines/pharmacology
  2. Ho KB, Mak JW, Ramadas M
    Trans R Soc Trop Med Hyg, 1987;81(2):257-9.
    PMID: 3303483
    Plasmodium falciparum drug sensitivities to chloroquine and mefloquine were assessed with WHO in vitro microtechnique test kits in 5 localities near the border with Thailand in Peninsular Malaysia. 105 of 113 (92.9%) parasite isolates were successfully tested and 103 (98.1%) showed resistance to chloroquine with parasite growth even at greater than or equal to 5.7 pmol of the drug. All these isolates were sensitive to mefloquine, parasite growth being inhibited at less than or equal to 11.3 pmol of the drug.
    Matched MeSH terms: Quinolines/pharmacology*
  3. Tibon NS, Ng CH, Cheong SL
    Eur J Med Chem, 2020 Feb 15;188:111983.
    PMID: 31911292 DOI: 10.1016/j.ejmech.2019.111983
    Discovery and development of antimalarial drugs have long been dominated by single-target therapy. Continuous effort has been made to explore and identify different targets in malaria parasite crucial for the malaria treatment. The single-target drug therapy was initially successful, but it was later supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has warranted a review of current antimalarial pharmacotherapy. This has led to the development of the new concept of covalent biotherapy, in which two or more pharmacophores are chemically bound to produce hybrid antimalarial drugs with multi-target functionalities. Herein, the review initially details the current pharmacotherapy for malaria as well as the conventional and novel targets of importance identified in the malaria parasite. Then, the rationale of multi-targeted therapy for malaria, approaches taken to develop the multi-target antimalarial hybrids, and the examples of hybrid molecules are comprehensively enumerated and discussed.
    Matched MeSH terms: Quinolines/pharmacology*
  4. Lambros C, Davis DR, Lewis GE
    Am J Trop Med Hyg, 1989 Jul;41(1):3-8.
    PMID: 2669543 DOI: 10.4269/ajtmh.1989.41.1.TM0410010003
    The drug susceptibility of 70 isolates of Plasmodium falciparum to standard and experimental antimalarials was evaluated using a radioisotope microdilution method. All isolates were from forest fringe dwelling Orang Asli, the aborigines of Peninsular Malaysia. The geometric mean IC50 values were: chloroquine, 10 ng/ml; amodiaquine, 4.7 ng/ml; mefloquine, 2.8 ng/ml; quinine, 40.5 ng/ml; halofantrine, 1.5 ng/ml; enpiroline, 3 ng/ml; and pyrimethamine, 21 ng/ml. Four isolates exhibited decreased susceptibility to chloroquine (IC50 greater than 60 ng/ml), and one exhibited decreased susceptibility to quinine (IC50 = 161 ng/ml). Three isolates showed decreased susceptibility to mefloquine (IC50 = 10-11 ng/ml). The lack of drug pressure may account for the high prevalence of P. falciparum isolates susceptible to chloroquine.
    Matched MeSH terms: Quinolines/pharmacology
  5. Wong EYL, Loh GOK, Tan YTF, Peh KK
    Drug Dev Ind Pharm, 2021 Feb;47(2):197-206.
    PMID: 33300818 DOI: 10.1080/03639045.2020.1862177
    OBJECTIVE: The aim of the study was to develop a simple, highthroughput and sensitive LC-MS/MS method and apply to a bioequivalence study of montelukast, a light sensitive drug.

    METHOD: The effects of organic modifiers in mobile phase, protein precipitation agent to plasma sample ratio, and light on montelukast stability in unprocessed and processed human plasma, were evaluated. Validation was conducted in accordance with European Medicines Agency Guideline on bioanalytical method validation.

    RESULTS: No interference peak was observed when acetonitrile was used as an organic modifier. Acetonitrile to plasma ratio of 4:1 produced clean plasma sample. Approximately 3 % of cis isomer was detected in unprocessed plasma samples while 21 % of cis isomer was detected in processed plasma samples after exposing to fluorescent light for 24h. The standard calibration curve was linear over 3.00-1200.00 ng/mL. All method validation parameters were within the acceptance criteria.

    CONCLUSION: The validated method was successfully applied to a bioequivalence study of two montelukast formulations involving 24 healthy Malaysian volunteers. The light stability of a light sensitive drug in unprocessed and processed human plasma samples should be studied prior to pharmacokinetic/bioequivalence studies. Measures could then be taken to protect the analyte in human plasma from light degradation.

    Matched MeSH terms: Quinolines/pharmacology*
  6. Ur Rahman S, Alam A, Parveen Z, Zainab, Assad M, Adnan Ali Shah S, et al.
    Bioorg Chem, 2024 Sep;150:107501.
    PMID: 38865858 DOI: 10.1016/j.bioorg.2024.107501
    In this study, eleven novel acyl hydrazides derivative of polyhydroquinoline were synthesized, characterized and screened for their in vitro anti-diabetic and anti-glycating activities. Seven compounds 2a, 2d, 2i, 2 h, 2j, 2f, and 2 g exhibited notable α-amylase inhibitory activity having IC50 values from 3.51 ± 2.13 to 11.92 ± 2.30 µM. Similarly, six compounds 2d, 2f, 2 h, 2i, 2j, and 2 g displayed potent α-glucosidase inhibitory activity compared to the standard acarbose. Moreover, eight derivatives 2d, 2 g, 2f, 2j, 2a, 2i, 2 g, and 2e showed excellent anti-glycating activity with IC50 values from 6.91 ± 2.66 to 15.80 ± 1.87 µM when compared them with the standard rutin (IC50 = 22.5 ± 0.90 µM). Molecular docking was carried out to predict the binding modes of all the compounds with α-amylase and α-glucosidase. The docking analysis revealed that most of the compounds established strong interactions with α-amylase and α-glucosidase. All compounds fitted well into the binding pockets of α-amylase and α-glucosidase. Among all compounds 2a and 2f were most potent based on docking score -8.2515 and -7.3949 against α-amylase and α-glucosidase respectively. These results hold promise for the development of novel candidates targeted at controlling postprandial glucose levels in individuals with diabetes.
    Matched MeSH terms: Quinolines/pharmacology
  7. Almandil NB, Taha M, Rahim F, Wadood A, Imran S, Alqahtani MA, et al.
    Bioorg Chem, 2019 04;85:109-116.
    PMID: 30605884 DOI: 10.1016/j.bioorg.2018.12.025
    New series of quinoline-based thiadiazole analogs (1-20) were synthesized, characterized by EI-MS, 1H NMR and 13C NMR. All synthesized compounds were subjected to their antileishmanial potential. Sixteen analogs 1-10, 12, 13, 16, 17, 18 and 19 with IC50 values in the range of 0.04 ± 0.01 to 5.60 ± 0.21 µM showed tremendously potent inhibition as compared to the standard pentamidine with IC50 value 7.02 ± 0.09 µM. Analogs 11, 14, 15 and 20 with IC50 8.20 ± 0.35, 9.20 ± 0.40, 7.20 ± 0.20 and 9.60 ± 0.40 µM respectively showed good inhibition when compared with the standard. Structure-activity relationships have been also established for all compounds. Molecular docking studies were performed to determine the binding interaction of the compounds with the active site target.
    Matched MeSH terms: Quinolines/pharmacology*
  8. Taha M, Ismail NH, Ali M, Rashid U, Imran S, Uddin N, et al.
    Bioorg Chem, 2017 04;71:192-200.
    PMID: 28228228 DOI: 10.1016/j.bioorg.2017.02.005
    The high potential of quinoline containing natural products and their derivatives in medicinal chemistry led us to discover a novel series of compounds 6-23 based on the concept of molecular hybridization. Most of the synthesized analogues exhibited potent leishmanicidal potential. The most potent compound (23, IC50=0.10±0.001μM) among the series was found ∼70 times more lethal than the standard drug. The current series 6-23 conceded in the development of fourteen (14) extraordinarily active compounds against leishmaniasis. In silico analysis were also performed to probe the mode of action while all the compounds structure were established by NMR and Mass spectral analysis.
    Matched MeSH terms: Quinolines/pharmacology
  9. Bano B, Arshia, Khan KM, Kanwal, Fatima B, Taha M, et al.
    Eur J Med Chem, 2017 Oct 20;139:849-864.
    PMID: 28865280 DOI: 10.1016/j.ejmech.2017.08.052
    In this study synthesis and β-glucuronidase inhibitory potential of 3/5/8 sulfonamide and 8-sulfonate derivatives of quinoline (1-40) are discussed. Studies reveal that all the synthetic compounds were found to have good inhibitory activity against β-glucuronidase. Nonetheless, compounds 1, 2, 5, 13, and 22-24 having IC50 values in the range of 1.60-8.40 μM showed superior activity than the standard saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 μM). Moreover, molecular docking studies of selected compounds were also performed to see interactions between active compounds and binding sites. Structures of all the synthetic compounds were confirmed through (1)H NMR, EI-MS and HREI-MS spectroscopic techniques.
    Matched MeSH terms: Quinolines/pharmacology*
  10. Taha M, Tariq Javid M, Imran S, Selvaraj M, Chigurupati S, Ullah H, et al.
    Bioorg Chem, 2017 10;74:179-186.
    PMID: 28826047 DOI: 10.1016/j.bioorg.2017.08.003
    α-Amylase is a target for type-2 diabetes mellitus treatment. However, small molecule inhibitors of α-amylase are currently scarce. In the course of developing small molecule α-amylase inhibitors, we designed and synthesized thiadiazole quinoline analogs (1-30), characterized by different spectroscopic techniques such as 1HNMR and EI-MS and screened for α-amylase inhibitory potential. Thirteen analogs 1, 2, 3, 4, 5, 6, 22, 23, 25, 26, 27, 28 and 30 showed outstanding α-amylase inhibitory potential with IC50 values ranges between 0.002±0.60 and 42.31±0.17μM which is many folds better than standard acarbose having IC50 value 53.02±0.12μM. Eleven analogs 7, 9, 10, 11, 12, 14, 15, 17, 18, 19 and 24 showed good to moderate inhibitory potential while seven analogs 8, 13, 16, 20, 21 and 29 were found inactive. Our study identifies novel series of potent α-amylase inhibitors for further investigation. Structure activity relationship has been established.
    Matched MeSH terms: Quinolines/pharmacology*
  11. Aziz MY, Hoffmann KJ, Ashton M
    J Pharm Sci, 2018 05;107(5):1461-1467.
    PMID: 29352982 DOI: 10.1016/j.xphs.2018.01.009
    The potential of the antimalarial piperaquine and its metabolites to inhibit CYP3A was investigated in pooled human liver microsomes. CYP3A activity was measured by liquid chromatography-tandem mass spectrometry as the rate of 1'-hydroxymidazolam formation. Piperaquine was found to be a reversible, potent inhibitor of CYP3A with the following parameter estimates (%CV): IC50 = 0.76 μM (29), Ki = 0.68 μM (29). In addition, piperaquine acted as a time-dependent inhibitor with IC50 declining to 0.32 μM (28) during 30-min pre-incubation. Time-dependent inhibitor estimates were kinact = 0.024 min-1 (30) and KI = 1.63 μM (17). Metabolite M2 was a highly potent reversible inhibitor with estimated IC50 and Ki values of 0.057 μM (17) and 0.043 μM (3), respectively. M1 and M5 metabolites did not show any inhibitory properties within the limits of assay used. Average (95th percentile) simulated in vivo areas under the curve of midazolam increased 2.2-fold (3.7-fold) on the third which is the last day of piperaquine dosing, whereas for its metabolite M2, areas under the curve of midazolam increased 7.7-fold (13-fold).
    Matched MeSH terms: Quinolines/pharmacology*
  12. Norazah A, Lim VKE, Rohani MY, Kamel AGM
    Med J Malaysia, 2005 Oct;60(4):411-5.
    PMID: 16570701
    The in-vitro susceptibility of quinupristin/dalfopristin, levofloxacin and moxifloxacin against methicillin-resistant Staphylococcus aureus (MRSA) strains, which are also resistant to fusidic acid and rifampicin were carried out to determine whether these antibiotics can be used as an alternative treatment for multiply resistant MRSA strains. The minimum inhibitory concentrations (MIC) of these antibiotics were determined by E-test. Quinupristin/dalfopristin had good activity (MIC90 = 1 mg/L) against these strains while most of the strains showed intermediate resistance to moxifloxacin with MIC90 = 2 mg/L). However, more than 90% of these strains were resistant to levofloxacin with the MICs that ranged from 8 mg/L to 16 mg/L with the majority inhibited at 8 mg/L.
    Matched MeSH terms: Quinolines/pharmacology*
  13. Mungthin M, Watanatanasup E, Sitthichot N, Suwandittakul N, Khositnithikul R, Ward SA
    Am J Trop Med Hyg, 2017 03;96(3):624-629.
    PMID: 28044042 DOI: 10.4269/ajtmh.16-0668
    Piperaquine combined with dihydroartemisinin is one of the artemisinin derivative combination therapies, which can replace artesunate-mefloquine in treating uncomplicated falciparum malaria in Thailand. The aim of this study was to determine the in vitro sensitivity of Thai Plasmodium falciparum isolates against piperaquine and the influence of the pfmdr1 gene on in vitro response. One hundred and thirty-seven standard laboratory and adapted Thai isolates of P. falciparum were assessed for in vitro piperaquine sensitivity. Polymorphisms of the pfmdr1 gene were determined by polymerase chain reaction methods. The mean and standard deviation of the piperaquine IC50 in Thai isolates of P. falciparum were 16.7 ± 6.3 nM. The parasites exhibiting chloroquine IC50 of ≥ 100 nM were significantly less sensitive to piperaquine compared with the parasite with chloroquine IC50 of < 100 nM. No significant association between the pfmdr1 copy number and piperaquine IC50 values was found. In contrast, the parasites containing the pfmdr1 86Y allele exhibited significantly reduced piperaquine sensitivity. Before nationwide implementation of dihydroartemisinin-piperaquine as the first-line treatment in Thailand, in vitro and in vivo evaluations of this combination should be performed especially in areas where parasites containing the pfmdr1 86Y allele are predominant such as the Thai-Malaysian border.
    Matched MeSH terms: Quinolines/pharmacology*
  14. Zaman K, Rahim F, Taha M, Sajid M, Hayat S, Nawaz M, et al.
    Bioorg Chem, 2021 10;115:105199.
    PMID: 34329995 DOI: 10.1016/j.bioorg.2021.105199
    Synthesis of quinoline analogs and their urease inhibitory activities with reference to the standard drug, thiourea (IC50 = 21.86 ± 0.40 µM) are presented in this study. The inhibitory activity range is (IC50 = 0.60 ± 0.01 to 24.10 ± 0.70 µM) which displayed that it is most potent class of urease inhibitor. Analog 1-9, and 11-13 emerged with many times greater antiurease potential than thiourea, in which analog 1, 2, 3, 4, 8, 9, and 11 (IC50 = 3.50 ± 0.10, 7.20 ± 0.20, 1.30 ± 0.10, 2.30 ± 0.10, 0.60 ± 0.01, 1.05 ± 0.10 and 2.60 ± 0.10 µM respectively) were appeared the most potent ones among the series. In this context, most potent analogs such as 1, 3, 4, 8, and 9 were further subjected for their in vitro antinematodal study against C. elegans to examine its cytotoxicity under positive control of standard drug, Levamisole. Consequently, the cytotoxicity profile displayed that analogs 3, 8, and 9 were found with minimum cytotoxic outline at higher concentration (500 µg/mL). All analogs were characterized through 1H NMR, 13C NMR and HR-EIMS. The protein-ligand binding interaction for most potent analogs was confirmed via molecular docking study.
    Matched MeSH terms: Quinolines/pharmacology*
  15. Lee WT, Tan BK, Eng SA, Yuen GC, Chan KL, Sim YK, et al.
    Food Funct, 2019 Sep 01;10(9):5759-5767.
    PMID: 31453615 DOI: 10.1039/c9fo01357a
    A strategy to circumvent the problem of multidrug resistant pathogens is the discovery of anti-infectives targeting bacterial virulence or host immunity. Black sea cucumber (Holothuria atra) is a tropical sea cucumber species traditionally consumed as a remedy for many ailments. There is a paucity of knowledge on the anti-infective capacity of H. atra and the underlying mechanisms involved. The objective of this study is to utilize the Caenorhabditis elegans-P. aeruginosa infection model to elucidate the anti-infective properties of H. atra. A bioactive H. atra extract and subsequently its fraction were shown to have the capability of promoting the survival of C. elegans during a customarily lethal P. aeruginosa infection. The same entities also attenuate the production of elastase, protease, pyocyanin and biofilm in P. aeruginosa. The treatment of infected transgenic lys-7::GFP worms with this H. atra fraction restores the repressed expression of the defense enzyme lys-7, indicating an improved host immunity. QTOF-LCMS analysis revealed the presence of aspidospermatidine, an indole alkaloid, and inosine in this fraction. Collectively, our findings show that H. atra possesses anti-infective properties against P. aeruginosa infection, by inhibiting pathogen virulence and, eventually, reinstating host lys-7 expression.
    Matched MeSH terms: Quinolines/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links