Displaying all 17 publications

Abstract:
Sort:
  1. Qin T, Ortega-Perez P, Wibbelt G, Lakim MB, Ginting S, Khoprasert Y, et al.
    Parasit Vectors, 2024 Mar 15;17(1):135.
    PMID: 38491403 DOI: 10.1186/s13071-024-06230-8
    BACKGROUND: The geographic distribution and host-parasite interaction networks of Sarcocystis spp. in small mammals in eastern Asia remain incompletely known.

    METHODS: Experimental infections, morphological and molecular characterizations were used for discrimination of a new Sarcocystis species isolated from colubrid snakes and small mammals collected in Thailand, Borneo and China.

    RESULTS: We identified a new species, Sarcocystis muricoelognathis sp. nov., that features a relatively wide geographic distribution and infects both commensal and forest-inhabiting intermediate hosts. Sarcocystis sporocysts collected from rat snakes (Coelognathus radiatus, C. flavolineatus) in Thailand induced development of sarcocysts in experimental SD rats showing a type 10a cyst wall ultrastructure that was identical with those found in Rattus norvegicus from China and the forest rat Maxomys whiteheadi in Borneo. Its cystozoites had equal sizes in all intermediate hosts and locations, while sporocysts and cystozoites were distinct from other Sarcocystis species. Partial 28S rRNA sequences of S. muricoelognathis from M. whiteheadi were largely identical to those from R. norvegicus in China but distinct from newly sequenced Sarcocystis zuoi. The phylogeny of the nuclear 18S rRNA gene placed S. muricoelognathis within the so-called S. zuoi complex, including Sarcocystis attenuati, S. kani, S. scandentiborneensis and S. zuoi, while the latter clustered with the new species. However, the phylogeny of the ITS1-region confirmed the distinction between S. muricoelognathis and S. zuoi. Moreover, all three gene trees suggested that an isolate previously addressed as S. zuoi from Thailand (KU341120) is conspecific with S. muricoelognathis. Partial mitochondrial cox1 sequences of S. muricoelognathis were almost identical with those from other members of the group suggesting a shared, recent ancestry. Additionally, we isolated two partial 28S rRNA Sarcocystis sequences from Low's squirrel Sundasciurus lowii that clustered with those of S. scandentiborneensis from treeshews.

    CONCLUSIONS: Our results provide strong evidence of broad geographic distributions of rodent-associated Sarcocystis and host shifts between commensal and forest small mammal species, even if the known host associations remain likely only snapshots of the true associations.

    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  2. Lim LH, Tan WB, Gibson DI
    Syst Parasitol, 2010 Jun;76(2):145-57.
    PMID: 20437220 DOI: 10.1007/s11230-010-9242-2
    Monogeneans identified as Sinodiplectanotrema malayanum n. sp. were collected from the fish Pennahia anea (Sciaenidae) off the west coast of Peninsular Malaysia. The new species is recognised on the basis of morphometrical differences in the anchors, marginal hooks and eggs and apparent differences in the 28S rDNA sequence data. The new species possesses features (ovary looping the intestinal caecum, body spines, a vagina and haptoral reservoirs) not noted in the original description of the type and only other species of the genus, S. argyrosomus Zhang, 2001, necessitating the re-assignment of the genus to the Diplectanidae Monticelli, 1903, a move which is supported by 28S rDNA evidence. Sinodiplectanotrema is redefined on the basis of the observation of several features not included in the original diagnosis.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  3. Chehri K, Salleh B, Zakaria L
    Microb Ecol, 2015 Apr;69(3):457-71.
    PMID: 25238930 DOI: 10.1007/s00248-014-0494-2
    Members of Fusarium solani species complex (FSSC) have been known as plant, animal, and human pathogens. Nevertheless, the taxonomic status of such an important group of fungi is still very confusing and many new species as well as lineages have been elucidated recently. Unfortunately, most of the new taxa came from temperate and subtropical regions. Therefore, the objectives of the present study were to identify strains of FSSC recovered from different sources in Malaysia. In the present study, 55 strains belonging to the FSSC were examined and phylogenetically analyzed on the basis of internal transcribed spacer (ITS) regions and partial translation elongation factor-1 (TEF-1α) sequences. Based on morphological features, a total of 55 strains were selected for molecular studies. Based on morphological features, the strains were classified into four described Fusarium species, namely Fusarium keratoplasticum, Fusarium falciforme, FSSC 5, and Fusarium cf. ensiforme, and one unknown phylogenetic species was introduced. Although the data obtained from morphological and molecular studies sufficiently supported each other, the phylogenetic trees based on ITS and TEF-1α dataset clearly distinguished closely related species and distinctly separated all morphological taxa. All members of FSSC in this research were reported for the first time for Malaysian mycoflora.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  4. Tang LP, Lee SS, Zeng NK, Cai Q, Zhang P, Yang ZL
    Mycologia, 2017 12 04;109(4):557-567.
    PMID: 29200380 DOI: 10.1080/00275514.2017.1394789
    Some Amanita specimens collected from Malaysia are critically investigated by morphological examination and molecular analysis of two gene fragments, the nuc rDNA partial 28S (28S) gene and the internal transcriber spacer (ITS1-5.8S-ITS2 = ITS) regions. Six phylogenetic species of Amanita section Caesareae are recognized among the studied collections. One of them is described as new, A. malayensis. Four of the phylogenetic species correspond with existing morphology-based taxa: A. aporema, A. javanica, A. princeps, and A. similis. The remaining species is not described because of the paucity of material. Detailed descriptions and the distribution of these southeastern Asian species are provided, along with a key to the species of section Caesareae from Malaysia.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  5. Lim PE, Tan J, Eamsobhana P, Yong HS
    Sci Rep, 2013 Oct 17;3:2977.
    PMID: 24131999 DOI: 10.1038/srep02977
    The phylogenetic relationships of some taxa in the Platycnemidinae at the species and generic levels have been investigated. Phylogenetic trees were generated from both individual mitochondrial encoded COI, COII, 16S rDNA and nuclear encoded 28S rDNA and also combined sequences; these data indicate that the component taxa of the genus Copera belong to two distinct genetic clades - the marginipes group and the annulata group. There was no distinct genetic difference between the red-legged and yellow-legged morphs of C. vittata. Molecular data showed that the annulata group is considered a member of the genus Platycnemis, as originally proposed. The genus Coeliccia, a member of the subfamily Calicnemiinae (Platycnemididae), is not grouped with the Platycnemidinae. The Disparoneurinae of the 'Protoneuridae' showed a closer relationship to the Platycnemidinae than the Calicnemiinae. The dataset supports the placement of the Disparoneurinae as a subfamily of the Platycnemididae. This resolves the monophyly of Platycnemididae.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics*
  6. Yong HS, Lim PE, Tan J, Ng YF, Eamsobhana P, Suana IW
    Sci Rep, 2014 Jul 03;4:5553.
    PMID: 24989852 DOI: 10.1038/srep05553
    Dragonflies of the genus Orthetrum are members of the suborder Anisoptera, family Libellulidae. There are species pairs whose members are not easily separated from each other by morphological characters. In the present study, the DNA nucleotide sequences of mitochondrial and nuclear genes were employed to elucidate the phylogeny and systematics of Orthetrum dragonflies. Phylogenetic analyses could not resolve the various subfamilies of the family Libellulidae unequivocally. The nuclear 28S rRNA gene is highly conserved and could not resolve congeneric species of Orthetrum. Individual mitochondrial genes (COI, COII, and 16S rRNA) and combination of these genes as well as the nuclear ITS1&2 genes clearly differentiate morphologically similar species, such as the reddish species pairs O. chrysis and O. testaceum, and the bluish-coloured species O. glaucum and O. luzonicum. This study also reveals distinct genetic lineages between O. pruinosum schneideri (occurring in Malaysia) and O. pruinosum neglectum (occurring north of Peninsular Malaysia from India to Japan), indicating these taxa are cryptic species.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  7. Alam MT, Das MK, Ansari MA, Sharma YD
    Acta Trop, 2006 Jan;97(1):10-8.
    PMID: 16125659
    Anopheles (Cellia) sundaicus (Rodenwaldt) is an important malaria vector in the Andaman and Nicobar islands of India where it breeds in freshwater as well as in brackish water. To establish the molecular identity of An. sundaicus on these islands we analyzed samples from four geographically isolated areas-Teressa, Nancowry, Car Nicobar and Katchal islands. PCR-amplification and nucleotide sequence analysis were performed for internal transcribed spacer 2 (ITS2) and domain-3 (D3) of 28S rRNA. The ITS2 region of An. sundaicus from all four islands was identical but different from An. sundaicus A of Vietnam and An. sundaicus s.s of Malaysia. Furthermore, freshwater and brackish water forms of An. sundaicus did not reveal any sequence variation. Similarly, the D3 sequences were identical among all An. sundaicus samples from the four islands. D3 sequences for a species of the Sundaicus Complex are reported here for the first time and thus could not be compared with other regional isolates of this species. In conclusion, probably only one member of the Sundaicus Complex exists on the Andaman and Nicobar islands, which breeds in freshwater as well as in brackish water and is different from the An. sundaicus A and Malaysian An. sundaicus s.s. The identification of a new sibling species of the Sundaicus Complex in these islands is significant from the viewpoint of vector control strategies.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  8. Littlewood DT, Rohde K, Clough KA
    Int J Parasitol, 1997 Nov;27(11):1289-97.
    PMID: 9421713
    Partial nuclear 28S ribosomal RNA and mitochondrial cytochrome c oxidase subunit I (COI) gene sequences (953 and 385 nucleotides, respectively) of one fish monogenean (outgroup) and six polystome monogeneans (four Polystomoides spp. from the oral cavities and urinary bladders of freshwater turtles in Australia and Malaya, two Neopolystoma spp. from the urinary bladder and conjunctival sac of a freshwater turtle in Australia) were used to examine the question of whether congeneric species infecting different sites in the same host species have speciated in that host by adapting to different sites, or whether species infecting a particular site in one host have given rise to species infecting the same site in different hosts. Results show unequivocally that congeneric species infecting the same site, even of host species belonging to different suborders and occurring on different continents, are more closely related than congeneric species infecting different sites of the same host species. This is interpreted as meaning that speciation has not occurred in one host. Morphological evolution of polystomes has been very slow: few differences between species and even genera have evolved over a period of at least 150 Myr, and this is matched by low substitution rates of nucleotides, and the ambiguous position of species of different genera, depending on whether COI or 28S rDNA sequences are used.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  9. Rajvanshi S, Verma J, Nirupama A
    Trop Biomed, 2019 Sep 01;36(3):726-741.
    PMID: 33597495
    A total of 17 species of the genus Bifurcohaptor Jain, 1958 have been reported from two fish families namely Bagridae Bleeker, 1858 (Mystus vittatus (Bloch, 1794), M. tengara (Hamilton, 1822), M. keletius (Valenciennes, 1840), Hemibagrus nemurus (Valenciennes, 1840), Rita rita (Hamilton, 1822) and Sperata seenghala (Sykes, 1839)) and Sisoridae Bleeker, 1858 (Bagarius bagarius (Hamilton, 1822)). Out of these, only two species viz. B. indicus and B. giganticus are found valid in India, parasitizing gills of Mystus spp. and Bagarius sp. Taxonomic studies suggest, present specimen of B. indicus and B. giganticus, both are morphologically close to species described by Jain (1958), except morphometric variations and posses 7 pairs of marginal hooks instead of 6 pairs. Present manuscript delves with the characterization of B. indicus and B. giganticus reported from India, using molecular techniques. Partial mt COI nucleotide sequence based insilico protein analysis and partial 28S and ITS-1 rDNA based phylogenetic analysis, estimated by Neighbour-joining (NJ) and Minimum Evolution (ME) methods revealed that the species of the genus Bifurcohaptor are genetically distinct and valid. The grouping of Bifurcohaptor spp. with other representatives of family Dactylogyridae supports morphology based placement into family Dactylogyridae. Present and previous host-parasite information suggests both Bifurcohaptor spp. are species specialist however, the genus Bifurcohaptor is generalist at generic level.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  10. Lopes-Lima M, Froufe E, Do VT, Ghamizi M, Mock KE, Kebapçı Ü, et al.
    Mol Phylogenet Evol, 2017 01;106:174-191.
    PMID: 27621130 DOI: 10.1016/j.ympev.2016.08.021
    Freshwater mussels of the order Unionida are key elements of freshwater habitats and are responsible for important ecological functions and services. Unfortunately, these bivalves are among the most threatened freshwater taxa in the world. However, conservation planning and management are hindered by taxonomic problems and a lack of detailed ecological data. This highlights the urgent need for advances in the areas of systematics and evolutionary relationships within the Unionida. This study presents the most comprehensive phylogeny to date of the larger Unionida family, i.e., the Unionidae. The phylogeny is based on a combined dataset of 1032bp (COI+28S) of 70 species in 46 genera, with 7 of this genera being sequenced for the first time. The resulting phylogeny divided the Unionidae into 6 supported subfamilies and 18 tribes, three of which are here named for the first time (i.e., Chamberlainiini nomen novum, Cristariini nomen novum and Lanceolariini nomen novum). Molecular analyses were complemented by investigations of selected morphological, anatomical and behavioral characters used in traditional phylogenetic studies. No single morphological, anatomical or behavioral character was diagnostic at the subfamily level and few were useful at the tribe level. However, within subfamilies, many tribes can be recognized based on a subset of these characters. The geographical distribution of each of the subfamilies and tribes is also presented. The present study provides important advances in the systematics of these extraordinary taxa with implications for future ecological and conservation studies.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  11. Nakamura I, Yoshimura S, Masaki T, Takase S, Ohsumi K, Hashimoto M, et al.
    J Antibiot (Tokyo), 2017 Jan;70(1):45-51.
    PMID: 27599768 DOI: 10.1038/ja.2016.107
    The novel antifungal agent ASP2397 (Vical's compound ID VL-2397) is produced by the fungal strain MF-347833 that was isolated from Malaysian leaf litter and is identified here as an Acremonium species based on its morphology, physiological properties and 28S ribosomal DNA sequence. Because of its potential importance for producing novel antifungal agents, we determined the taxonomic and biologic properties of MF-347833. We show here that ASP2397 is a cyclic hexapeptide that chelates aluminum ion and is therefore similar to ferrichrome, a hydroxamate siderophore. However, ASP2397 differs structurally from licensed antifungal agents such as amphotericin B, triazoles and echinocandins. To understand the relationship between chemical structure and biological function, we isolated certain ASP2397 derivatives from the culture broth, and we further chemically converted the metal-free form to other derivatives.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  12. Lee FCH, Muthu V
    Am J Trop Med Hyg, 2021 02 22;104(4):1388-1393.
    PMID: 33617472 DOI: 10.4269/ajtmh.20-0767
    Sarcocystosis outbreaks in Tioman and Pangkor islands of Malaysia between 2011 and 2014 have raised the need to improve Sarcocystis species detection from environmental samples. In-house works found that published primers amplifying the 18S rRNA gene of Sarcocystis either could not produce the target from environmental samples or produced Sarcocystis DNA sequence that was insufficient for species identification. Using the primer pair of 18S S5 F (published) and 28S R6 R (new), this study improved the PCR amplification of Sarcocystidae to overcome these two difficulties. The PCR product spanned from the 18S to 28S rRNA genes, providing more information for species identification. The long DNA sequence allowed comparison between the "Ident" and "Query Cover" sorting in GenBank identity matching. This revealed the ambiguity in identity matching caused by different lengths of reference DNA sequences, which is seldom discussed in the literature. Using the disparity index test, a measurement of homogeneity in nucleotide substitution pattern, it is shown that the internal transcribed spacer (ITS)1-5.8S-ITS2 and 28S genes are better than the 18S gene in indicating nucleotide variations, implying better potentials for species identification. The example given by the handful of Sarcocystidae long DNA sequences reported herein calls for the need to report DNA sequence from the 18S to the 28S rRNA genes for species identification, especially among emerging pathogens. DNA sequence reporting should include the hypervariable 5.8S and ITS2 regions where applicable, and not be limited to single gene, per the current general trend.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics*
  13. Sato H, Torii H, Une Y, Ooi HK
    J Parasitol, 2007 Dec;93(6):1476-86.
    PMID: 18314696 DOI: 10.1645/GE-1106.1
    Strongyloides callosciureus n. sp. (Nematoda: Rhabditoidea), from Asian sciurids, is described based on morphology, morphometry, and the small and large subunit (SSU/LSU) ribosomal RNA gene (rDNA) sequences. This new species was collected from Pallas's squirrels (Callosciurus erythraeus) in the central part of mainland Japan (Honshu), which were originally introduced from Taiwan some decades ago, and plantain squirrels (Callosciurus notatus) imported from Malaysia as personal pets. For comparison, Strongyloides robustus Chandler, 1942 was collected from American red squirrels (Tamiasciurus hudsonicus) and southern flying squirrels (Glaucomys volans) imported from the United States as personal pets. The parasitic females found in North American and Asian sciurids shared some key morphological features such as the ovary running spirally around the gut, and the shapes of the stoma in the apical view and the tail. However, morphometric features of parasitic females in North American and Asian sciurids differed significantly from each other; the former was larger than the latter, and the relative position of the vulva to the whole body length from the mouth was different. The SSU/LSU rDNA sequences supported the division of sciurid Strongyloides isolates by geographical distribution of the host and morphological features, leading us to propose the erection of new species.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  14. Coppard SE, Jessop H, Lessios HA
    Sci Rep, 2021 Aug 16;11(1):16568.
    PMID: 34400682 DOI: 10.1038/s41598-021-95872-0
    The sea urchins Echinothrix calamaris and Echinothrix diadema have sympatric distributions throughout the Indo-Pacific. Diverse colour variation is reported in both species. To reconstruct the phylogeny of the genus and assess gene flow across the Indo-Pacific we sequenced mitochondrial 16S rDNA, ATPase-6, and ATPase-8, and nuclear 28S rDNA and the Calpain-7 intron. Our analyses revealed that E. diadema formed a single trans-Indo-Pacific clade, but E. calamaris contained three discrete clades. One clade was endemic to the Red Sea and the Gulf of Oman. A second clade occurred from Malaysia in the West to Moorea in the East. A third clade of E. calamaris was distributed across the entire Indo-Pacific biogeographic region. A fossil calibrated phylogeny revealed that the ancestor of E. diadema diverged from the ancestor of E. calamaris ~ 16.8 million years ago (Ma), and that the ancestor of the trans-Indo-Pacific clade and Red Sea and Gulf of Oman clade split from the western and central Pacific clade ~ 9.8 Ma. Time since divergence and genetic distances suggested species level differentiation among clades of E. calamaris. Colour variation was extensive in E. calamaris, but not clade or locality specific. There was little colour polymorphism in E. diadema.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  15. Ngui R, Ching LS, Kai TT, Roslan MA, Lim YA
    Am J Trop Med Hyg, 2012 May;86(5):837-42.
    PMID: 22556084 DOI: 10.4269/ajtmh.2012.11-0446
    Species identification of human hookworm infections among eight communities in rural areas of Peninsular Malaysia was determined during 2009-2011. Fecal samples were examined by microscopy and subsequently, the internal transcribed spacer 2 and 28S ribosomal RNA region of Necator americanus and Ancylostoma spp. were sequenced. Overall, 9.1% (58 of 634) were identified positive by microscopy for hookworm infection, and 47 (81.0%) of 58 were successfully amplified and sequenced. Sequence comparison found that N. americanus (87.2%) was the most predominant hookworm identified, followed by Ancylostoma ceylanicum (23.4%). No A. duodenale infection was detected in this study. Detection of A. ceylanicum in humans highlighted the zoonotic transmission among humans living near dogs. Thus, implementation of effective control measures for hookworm infections in future should seriously consider this zoonotic implication.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  16. Kurtzman CP
    Int J Syst Evol Microbiol, 2007 May;57(Pt 5):1154-1162.
    PMID: 17473275 DOI: 10.1099/ijs.0.64847-0
    The genus Blastobotrys, which now includes species previously assigned to the synonymous genera Arxula and Sympodiomyces, represents the anamorph of the ascosporogenous genus Trichomonascus. Six novel species are proposed for assignment to Blastobotrys. They were detected from their unique nucleotide sequences in large-subunit rDNA, ITS1-5.8S-ITS2 rDNA, mitochondrial small-subunit rDNA and the cytochrome oxidase II gene. The proposed novel species are Blastobotrys americana sp. nov. (type strain NRRL Y-6844(T)=CBS 10337(T); substrate unknown; Kansas, USA), Blastobotrys illinoisensis sp. nov. (type strain NRRL YB-1343(T)=CBS 10339(T); from forest debris; Illinois, USA), Blastobotrys malaysiensis sp. nov. (type strain NRRL Y-6417(T)=CBS 10336(T); from soil; Malaysia), Blastobotrys muscicola sp. nov. (type strain NRRL Y-7993(T)=CBS 10338(T); from moss; Louisiana, USA), Blastobotrys peoriensis sp. nov. (type strain NRRL YB-2290(T)=CBS 10340(T); from a fungus; Peoria, IL, USA) and Blastobotrys raffinosifermentans sp. nov. (type strain NRRL Y-27150(T)=CBS 6800(T); substrate unknown).
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
  17. Schroers HJ, Geldenhuis MM, Wingfield MJ, Schoeman MH, Yen YF, Shen WC, et al.
    Mycologia, 2005 Mar-Apr;97(2):375-95.
    PMID: 16396346
    Psidium guajava wilt is known from South Africa, Malaysia and Taiwan. The fungus causing this disease, Myxosporium psidii, forms dry chains of conidia on surfaces of pseudoparenchymatous sporodochia, which develop in blisters on bark. Similar sporodochia are characteristic of Nalanthamala madreeya, the type species of Nalanthamala. Nalanthamala, therefore, is the appropriate anamorph genus for Myxosporium psidii, while Myxosporium is a nomen nudum (based on M. croceum). For M. psidii the combination Nalanthamala psidii is proposed. Nalanthamala psidii, the palm pathogen Gliocladium (Penicillium) vermoesenii, another undescribed anamorphic species from palm, two species of Rubrinectria and the persimmon pathogen Acremonium diospyri are monophyletic and belong to the Nectriaceae (Hypocreales) based on partial nuclear large subunit ribosomal DNA (LSU rDNA) analyses. Rubrinectria, therefore, is the teleomorph of Nalanthamala, in which the anamorphs are classified as N. vermoesenii, N. diospyri or Nalanthamala sp. Nalanthamala squamicola, the only other Nalanthamala species, has affinities with the Bionectriaceae and is excluded from this group. Rubrinectria/Nalanthamala species form dimorphic conidiophores and conidia in culture. Fusiform, cylindrical, or allantoid conidia arise in colorless liquid heads on acremonium-like conidiophores; ovoidal conidia with somewhat truncated ends arise in long, persistent, dry chains on penicillate conidiophores. No penicillate but irregularly branched conidiophores were observed in N. diospyri. Conidia of N. psidii that are held in chains are shorter than those of N. madreeya, of which no living material is available. Nalanthamala psidii and N. diospyri are pathogenic specifically to their hosts. They form pale yellow to pale orange or brownish orange colonies, respectively, and more or less white conidial masses. Most strains of Rubrinectria sp., Nalanthamala sp. and N. vermoesenii originate from palm hosts, form mostly greenish or olive-brown colonies and white-to-salmon conidial masses. They form a monophyletic clade to which Nalanthamala psidii and N. diospyri are related based on analyses of the internal transcribed spacer regions and 5.8S rDNA (ITS rDNA), LSU rDNA, and partial beta-tubulin gene. Few polymorphic sites in the ITS rDNA and beta-tubulin gene indicate that Nalanthamala psidii comprises two lineages, one of which has been detected only in South Africa.
    Matched MeSH terms: RNA, Ribosomal, 28S/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links