Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Mohammad Faidzul Nasrudin, Khairuddin Omar, Mohamad Shanudin Zakaria, Liong CY
    Sains Malaysiana, 2010;39:291-297.
    Jelmaan surih yang merupakan pengitlakan jelmaan Radon, membenarkan pembinaan fitur imej tak-ubah kepada sekumpulan jelmaan imej yang dipilih. Dalam makalah ini, penulis mendemonstrasi kebergunaan fitur Jelmaan surih yang tak-ubah kepada herotan afin bagi membolehkannya membezakan aksara Jawi. Proses ini terdiri daripada menyurih imej dengan garis-garis lurus pada semua orientasi yang mungkin sambil menghitung beberapa fungsian bagi fungsi imej. Setiap kombinasi fungsian akan menghasilkan satu fungsi orientasi (atau fitur) bagi garis-garis surihan tersebut yang dikenali sebagai tandatangan objek. Jika fungsian yang digunakan mempunyai beberapa sifat pratakrif, tandatangan objek tersebut boleh digunakan untuk membezakan aksara Jawi secara afin. Ia bermanfaat untuk membina fitur tak-ubah terhadap putaran, translasi, penskalaan dan ricihan imej. Seterusnya, penulis mendemonstrasi kebergunaan fitur ini dengan membandingkan keputusan pengecamannya dengan keputusan yang diperoleh daripada fitur berasaskan momen afin tak-ubah. Eksperimen menggunakan Jelmaan surih telah menghasilkan keputusan yang cemerlang untuk pengecaman aksara Jawi bercetak dan tulisan tangan yang tak-ubah kepada herotan afin.
    Matched MeSH terms: Radon
  2. Sulaiman, I., Omar, M.
    MyJurnal
    The indoor and outdoor radon/thoron progenies concentrations and natural background radiation levels throughout Sarawak and Sabah were measured. The measurements were carried out at 234 locations in 40 towns in Sarawak and Sabah. The mean indoor and outdoor radon equilibrium equivalent concentrations (EEC) in Sarawak were found to be 1.2 Bqm-3 and 1.5 Bqm-3 respectively. In Sabah, the mean indoor and outdoor radon equilibrium equivalent concentrations were 1.7 Bqm-3. The mean indoor and outdoor thoron equilibrium equivalent concentrations of 0.4 Bqm-3 and 0.3Bqm-3 respectively, were the same for Sarawak and Sabah. The mean indoor and outdoor radiation levels of 46 nGyh-1 and 42 nGyh-1 in Sarawak were slightly lower than the respective values in Sabah, i.e. 53 nGyh-1 and 46 nGy h-1.
    Matched MeSH terms: Radon; Radon Daughters
  3. Alam MS, Siraz MMM, A M J, Das SC, Bradley DA, Khandaker MU, et al.
    PLoS One, 2023;18(5):e0286267.
    PMID: 37220107 DOI: 10.1371/journal.pone.0286267
    Radon (222Rn), an inert gas, is considered a silent killer due to its carcinogenic characteristics. Dhaka city is situated on the banks of the Buriganga River, which is regarded as the lifeline of Dhaka city because it serves as a significant source of the city's water supply for domestic and industrial purposes. Thirty water samples (10 tap water from Dhaka city and 20 surface samples from the Buriganga River) were collected and analyzed using a RAD H2O accessory for 222Rn concentration. The average 222Rn concentration in tap and river water was 1.54 ± 0.38 Bq/L and 0.68 ± 0.29 Bq/L, respectively. All the values were found below the maximum contamination limit (MCL) of 11.1 Bq/L set by the USEPA, the WHO-recommended safe limit of 100 Bq/L, and the UNSCEAR suggested range of 4-40 Bq/L. The mean values of the total annual effective doses due to inhalation and ingestion were calculated to be 9.77 μSv/y and 4.29 μSv/y for tap water and river water, respectively. Although all these values were well below the permissible limit of 100 μSv/y proposed by WHO, they cannot be neglected because of the hazardous nature of 222Rn, especially considering their entry to the human body via inhalation and ingestion pathways. The obtained data may serve as a reference for future 222Rn-related works.
    Matched MeSH terms: Radon*
  4. Rahmat MA, Ismail AF, Rodzi ND, Aziman ES, Fadzil SM, Hidzir NM, et al.
    Environ Monit Assess, 2023 May 24;195(6):714.
    PMID: 37221312 DOI: 10.1007/s10661-023-11308-4
    The study aims to assess long-term radiological exposure risks and effects to both industrial workers and occupants living in the near vicinity of local tailing processing plants. The detrimental effects of licensing exemption were studied by comparing contaminated soil collected from 7 unlicensed-by the Atomic Energy Licensing Board-tailing processing plants with soil from control location. It was found that the average concentration of 226Ra, 232Th, and 40 K for all seven processing plants fell between the range of 0.1 ± 0.0-7.21 ± 0.1 Bqg-1, 0.1 ± 0.0-16.34 ± 0.27 Bqg-1, and 0.18 ± 0.01-1.74 ± 0.01 Bqg-1, respectively, showing observable indication of soil contamination with Technologically Enhanced Naturally Occurring Radioactive (TENORM) material. The annual effective dose was calculated which showed that most samples exceeded the recommended value of the ICRP of 1 mSvy-1 for non-radiation workers. Assessment of radiological hazards in the environment was done by calculating the radium equivalent value; revealing the exposure risk posed by the contaminated soil is substantial. Using the relatable inputs, the RESRAD-ONSITE computed code revealed that the dose due to internal exposure via inhalation of radon gas contributes the most to the overall exposure. The covering of the contaminated soil with a clean layer is effective in reducing external dose but ineffective for radon inhalation. RESRAD-OFFSITE computer code also revealed that the contribution of exposure via contaminated soil in the neighbouring vicinity is below the recommended 1 mSvy-1 threshold but still contributes to a significant amount cumulatively when considering other exposure pathways as well. The study proposes the introduction of clean cover soil as a viable option in reducing external dose from contaminated soil as 1 m of clean cover soil is able to reduce dose exposure by 23.8-30.5%.
    Matched MeSH terms: Radon*
  5. Suppian R, Vegandraj S, Kandaiya S
    Int J Rad Appl Instrum A, 1992 Jul;43(7):937-8.
    PMID: 1321104
    Pumping air through a soft tissue which acts as a membrane is a relatively easy and quick method to collect and measure radon/thoron and its daughter nuclides in air. Analysis of the activity of the radionuclides can be calculated using an alpha counter which has been calibrated. In this method the activity of radon/thoron cannot be separated from the activity of radionuclides already present in the aerosol or dust particles.
    Matched MeSH terms: Radon/analysis*; Radon Daughters
  6. Ismail Sulaiman, Khairuddin Mohamad Kontol, Faizal Azrin Abdul Razalim, Azman Jaafar
    MyJurnal
    The objective of this study was to measure indoor radon concentrations in the expected high risk area around Ipoh in Kinta Valley, Perak. The area was chosen based on its own special characteristics. The measurements were carried out by means of long term exposure (3 months) using CR-39 solid state nuclear track detector. The mean indoor radon concentration in Ipoh was 45 Bq/m3 which is equivalent to effective dose of 1.1 mSv/y. This value was higher compared to low or normal area in Bangi, Selangor but comparable to the world average value reported by UNSCEAR. The maximum value of indoor radon concentration measured was 87 Bq/m3.
    Matched MeSH terms: Radon
  7. Ismail Sulaiman, Khairuddin Mohamad Kontol, Faizal Azrin Abdul Razalim
    MyJurnal
    The indoor and outdoor radon concentrations in Cameron Highlands (Peninsular Malaysia) and Ranau (East Malaysia) were measured. The measurements were carried out using passive method based on CR-39 solid state nuclear track detector (SSNTD) (for indoor measurements in Cameron Highlands) and active method using continuous radon/thoron progeny monitor (for indoor and outdoor measurements in Ranau and outdoor measurements in Cameron Highlands). The mean indoor radon concentrations in Cameron Highlands and Ranau were 50 Bqm-3 and 1.5 Bqm-3, respectively. The mean indoor radon concentration in Cameron Highlands was slightly higher compare to the world average. The maximum value recorded was 97 Bqm-3 which is almost similar to WHO reference level. The mean outdoor radon concentrations in Cameron Highlands and Ranau were 7.4 Bqm-3and 1.7 Bqm-3, respectively. The outdoor concentrations were low and comparable to world outdoor average.
    Matched MeSH terms: Radon; Radon Daughters
  8. Rosli H. Mahat
    MyJurnal
    A month hourly measurement of radon concentration was taken in the bedroom of a two story link house in Kuala Lumpur. The house is a typical urban house in Malaysia, constructed with bricks, concrete and cement plaster. These materials are natural sources of radon in the house. The hourly radon concentration was found to vary from 0 pCiL-1 to 3 pCiL-1. It was found to peak during early morning and to minimize in the evening. The daily average radon concentration varied from 0.2 pCiL-1 to 1.0 pCiL-1.
    Matched MeSH terms: Radon
  9. Murtadha S. Al-Nafiey, Mohammad S. Jaafar, Sabar Bauk
    Sains Malaysiana, 2014;43(2):227-231.
    Radon and toxic elements (Pb, Cd, Co, Cu, Cr, Zn and Ni) were measured in different water samples in Cameron Highlands, Pahang. RAD7 and rad H20 were used to estimate the radon concentration. The average values for radon concentration were found to vary from a minimum of 0.21 Bq/L to a maximum of 0.297 Bq/L. Heavy metals concentration were measured using an atomic absorption spectrometer. The mean concentrations of Pb, Cd, Co, Ni, Cu, Zn and Cr were 0.07, 0.009, 0.009, 0.043, 0.076, 0.079 mg/L and ND, respectively. Comparing the results with the literature, shows that the concentrations obtained were within the allowed limits of the agricultural and domestic use.
    Matched MeSH terms: Radon
  10. Gillmore G, Gilbertson D, Grattan J, Hunt C, McLaren S, Pyatt B, et al.
    Ecotoxicol Environ Saf, 2005 Feb;60(2):213-27.
    PMID: 15546638
    This reconnaissance study of radon concentrations in the Great Cave of Niah in Sarawak shows that in relatively deep pits and trenches in surficial deposits largely covered by protective shelters with poor ventilation, excavators are working in a micro-environment in which radon concentrations at the ground surface can exceed those of the surrounding area by a factor of > x 2. Although radon concentrations in this famous cave are low by world standards (alpha track-etch results ranging from 100 to 3075 Bq m(-3)), they still may pose a health risk to both excavators (personal dosemeter readings varied from 0.368 to 0.857 mSv for 60 days of work) and cave occupants (1 yr exposure at 15 h per day with an average radon level of 608 Bq m(-3) giving a dose of 26.42 mSv). The data here presented also demonstrate that there is considerable local variation in radon levels in such environments as these.
    Matched MeSH terms: Radon/poisoning*
  11. Adithya VSP, Chidambaram S, Prasanna MV, Venkatramanan S, Tirumalesh K, Thivya C, et al.
    Arch Environ Contam Toxicol, 2021 Jan;80(1):308-318.
    PMID: 33398396 DOI: 10.1007/s00244-020-00798-9
    The presence of radioactive elements in groundwater results in high health risks on surrounding populations. Hence, a study was conducted in central Tamil Nadu, South India, to measure the radon levels in groundwater and determine the associated health risk. The study was conducted along the lithological contact of hard rock and sedimentary formation. The concentrations of uranium (U) varied from 0.28 to 84.65 µg/L, and the radioactivity of radon (Rn) varied from 258 to 7072 Bq/m3 in the collected groundwater samples. The spatial distribution of Rn in the study area showed that higher values were identified along the central and northern regions of the study area. The data also indicate that granitic and gneissic rocks are the major contributors to Rn in groundwater through U-enriched lithological zones. The radon levels in all samples were below the maximum concentration level, prescribed by Environmental Protection Agency. The effective dose levels for ingestion and inhalation were calculated according to parameters introduced by UNSCEAR and were found to be lesser (0.235-6.453 μSvy-1) than the recommended limit. Hence, the regional groundwater in the study area does not pose any health risks to consumers. The spatial distribution of Rn's effective dose level indicates the higher values were mainly in the central and northern portion of the study area consist of gneissic, quarzitic, and granitic rocks. The present study showed that Rn concentrations in groundwater depend on the lithology, structural attributes, the existence of uranium minerals in rocks, and the redox conditions. The results of this study provide information on the spatial distribution of Rn in the groundwater and its potential health risk in central Tamil Nadu, India. It is anticipated that these data will help policymakers to develop plans for management of drinking water resources in the region.
    Matched MeSH terms: Radon/analysis*
  12. Nuhu H, Hashim S, Aziz Saleh M, Syazwan Mohd Sanusi M, Hussein Alomari A, Jamal MH, et al.
    PLoS One, 2021;16(7):e0254099.
    PMID: 34320010 DOI: 10.1371/journal.pone.0254099
    In this study geogenic radon potential (GRP) mapping was carried out on the bases of field radon in soil gas concentration and soil gas permeability measurements by considering the corresponding geological formations. The spatial pattern of soil gas radon concentration, soil permeability, and GRP and the relationship between geological formations and these parameters was studied by performing detailed spatial analysis. The radon activity concentration in soil gas ranged from 0.11 to 434.5 kBq m-3 with a mean of 18.96 kBq m-3, and a standard deviation was 55.38 kBq m-3. The soil gas permeability ranged from 5.2×10-14 to 5.2×10-12 m2, with a mean of 5.65×10-13 m2. The GRP values were computed from the 222Rn activity concentration and soil gas permeability data. The range of GRP values was from 0.04 to 154.08. Locations on igneous granite rock geology were characterized by higher soil radon gas activity and higher GRP, making them radon-prone areas according to international standards. The other study locations fall between the low to medium risk, except for areas with high soil permeability, which are not internationally classified as radon prone. A GRP map was created displaying radon-prone areas for the study location using Kriging/Cokriging, based on in situ and predicted measured values. The GRP map assists in human health risk assessment and risk reduction since it indicates the potential of the source of radon and can serve as a vital tool for radon combat planning.
    Matched MeSH terms: Radon/analysis*
  13. Syahrul, A.S., Jaafar, M.S., Al-Halemi, Ahmed, Hamouda, S.A.
    MyJurnal
    The purpose of this study is to measure and monitor the radon concentration from fabricated foamed light concrete, made of Portland cement, mine sand and granite. The concentration of radon released was measured using Radon Monitor Model 1027 from Sun Nuclear. The results of this research showed that the avearge radon concentration from foamed light concrete was 2.2 pCiL-1 L. Higher radon concentrations were detected after three days of measurements. Environment Protection Agency stated in its guidelines that radon concentration must lower than 4 pCiL-1 for a healthy environment. Thus, the use of foamed light concrete can be one of the alternatives to reduce radon concentration levels in human environment.
    Matched MeSH terms: Radon
  14. Ali MYM, Hanafiah MM, Khan MF
    Sci Total Environ, 2018 Jun 01;626:1-10.
    PMID: 29331833 DOI: 10.1016/j.scitotenv.2018.01.080
    This study aimed to measure the equilibrium equivalent radon (EECRn) concentration in an old building (Building-1) and a new building (Building-2) with mechanical ventilation and a natural ventilation system, respectively. Both buildings were located at the campus of University Kebangsaan Malaysia. The concentration of indoor radon was measured at 25 sampling stations using a radon detector model DOSEman PRO. The sampling was conducted for 8 h to represent daily working hours. A correlation of the radon concentration was made with the annual inhalation dose of the occupants at the indoor stations. The equilibrium factor and the annual effective dose on the lung cancer risks of each occupant were calculated at each sampling station. The average equilibrium equivalent radon measured in Building-1 and Building-2 was 2.33 ± 0.99 and 3.17 ± 1.74 Bqm-3, respectively. The equilibrium factor for Building 1 ranged from 0.1053 to 0.2273, and it ranged from 0.1031 to 0.16 for Building 2. The average annual inhalation doses recorded at Building-1 and Building-2 were 0.014 ± 0.005 mSv y-1and 0.020 ± 0.013 mSv y-1, respectively. The annual effective dose for Building-1 was 0.034 ± 0.012 mSv y-1, and it was 0.048 ± 0.031 mSv y-1for Building-2. The values of equilibrium equivalent radon concentration for both buildings were below the standard recommended by the International Commission on Radiological Protection (ICRP). However, people may have different radon tolerance levels. Therefore, the inhalation of the radon concentration can pose a deleterious health effect for people in an indoor environment.
    Matched MeSH terms: Radon
  15. Ismail B, Redzuwan Y, Chua RS, Shafiee W
    Appl Radiat Isot, 2001 Mar;54(3):393-7.
    PMID: 11214872
    The processing of amang (one of a number of tin-tailing products) for its valuable minerals has associated with the radiological and environmental problems. The processing and stockpiling of amang and ilmenite in open-air spaces, subject as it is to environmental influences, gives rise to a potential for affecting residents in adjacent area. A case study was carried out in a residential area neighbouring a typical amang plant to investigate the radiological impact to the residents. The average Effective Dose rates, calculated based on the contributions of Effective Dose rates from inhaled suspended radioactive dust, radon-thoron and their progeny, and external gamma radiation, were determined for selected houses. Results show that the occupants of those houses received Effective Dose rate, which cannot be differentiated from background. The major contributor to the average Effective Dose rate came from external radiation sources. Inhaled radon and its progeny was the second major contributor.
    Matched MeSH terms: Radon/adverse effects; Radon/analysis
  16. Ahmed, Al-Halemi, Jaafar, M.S.
    MyJurnal
    Radon-222 emanation from selected locally produced samples of building materials, used in Malaysia were measured using the Professional Continuous Radon Monitor Model 1027, which is a patented electronic detecting-junction photodiode sensor to measure the concentration of radon gas. Each sample was placed for 72 hours inside a 3.11 x 10 -2 m 3 sealed container. It was found that the average radon concentration Bqm -3 of air for concrete bricks, concrete brick with cemented coatings, concrete brick with cemented coatings and paint samples were, 303.7 Bq/m 3, 436.6 Bqm -3, and 410.7 Bqm -3, respectively. (Bqm -3 ) for brown clay brick, brown clay brick with cemented coatings, brown clay brick with cemented coatings and paint were 166.5 Bqm -3, 166.5 Bqm -3, and 148 Bqm -3, respectively. (Bqm -3 ) for sample of compact ceramic tile was 0 Bqm -3. The findings show that concrete brick samples are important source of radon emanation, while brown clay brick have been accepted as the recommendation of the U.S. Environmental Protection Agency (EPA), and ceramic tiles had no emanation of radon gas due to their compact surface, or the glazed layer created on the tile surface during the manufacturing process, which blocks radon emanation. A positive correlation between radon emanation and radium content has been observed for both brown clay brick and concrete brick samples whereas a negative correlation for ceramic tile has been observed. Consequently from the findings, in order to reduce radon emanation and radon exposure in house dwellings and in addition to EPA recommendation of sealed cracks and established good ventilation, we recommend concrete walls to be painted and concrete floors to be paved with ceramic tiles.
    Matched MeSH terms: Radon
  17. Zaini Hamzah, Masitah Alias, Siti Afiqah Abdul Rahman, Mohamed Kassim, Ahmad Saat, Abdul Kadir Ishak
    MyJurnal
    Recently, Malaysia has taken a positive step toward providing a better water quality by introducing more water quality parameters into its Water Quality Standard. With regard to the natural radionuclides that may present in the water, 3 parameters were introduced that is gross alpha, gross beta and radium which need to be measured and cannot exceed 0.1, 1.0 and 1.0 Bq/L respectively. This study was conducted to develop a more practical method in measuring these parameters in aqueous environmental samples. Besides having a lot of former tin mining areas, some part of Malaysia is located on the granitic rock which also contributes to a certain extent the amount of natural radionuclides such as uranium and thorium. For all we know these two radionuclides are the origin of other radionuclides being produced from their decay series. The State of Kelantan was chosen as the study area, where the water samples were collected from various part of the Kelantan River. 25 liters of samples were collected, acidify to pH 2 and filtered before the analysis. Measurement of these parameters was done using liquid scintillation counter (LSC). The LSC was set up to
    the optimum discriminator level and counting was done using alpha-beta mode. The results show that gross alpha and beta can be measured using scintillation cocktail and radium and radon using extraction method. The results for gross alpha, gross beta, 222Ra and 226Ra are 0.39-6.42, 0.66-16.18, 0.40-4.65 and 0.05-0.56 Bq/L. MDA for gross alpha, gross beta and radium is 0.03, 0.08 and 0.00035 Bq/L respectively.
    Matched MeSH terms: Radon
  18. Ahmad Saat, Zaini Hamzah, Zaharidah Abu Bakar, Zuraidah A. Munir, Siti Mariam Sumari, Misbah Hassan
    MyJurnal
    A study was carried out to determine short term diurnal radon concentration at five locations in Malaysia. Two locations (KG & AP) are former tin mining areas that has been converted to housing area and training centre respectively, one a relatively new city (SA), that was formerly a rubber and oil palm plantation area, one older cities (KB) and one housing complex by the sea (LP). The study was carried out in 2005, 2006 and 2007 using a diffused-junction photodiode sensor continuous radon monitor. The monitor is recognized by the USEPA. In each location, measurements were carried out on at least ten sites. Former tin mining areas of KG and AP shows up to seven times higher indoor average than the average in the other three locations. However the indoor average in all locations is still below the action level of 4 pCiL-1. For outdoor, the former tin mining areas average concentration was higher than the global average of 0.4 pCiL-1. For the twenty four hours temporal variation the trend indicated that former tin mining areas concentration are always higher, and at time up to six fold higher. The hourly variation of all locations follows an identical trend of high concentration during early to late morning and drop in the afternoon till evening. The outdoor twenty four hour temporal average of former tin mining areas is consistently higher than the outdoor global average of 0.4 pCiL-1. The strong correlation between indoor and outdoor concentration at AP, indicates that indoor radon might originates from outdoor environment. The study was also extended to estimate the effective dose (mSvyr-1) of Rn-222 to the public.
    Matched MeSH terms: Radon
  19. Muhammad BG, Jaafar MS, Azhar AR, Akpa TC
    Radiat Prot Dosimetry, 2012 Apr;149(3):340-6.
    PMID: 21642647 DOI: 10.1093/rpd/ncr230
    Measurements of (222)Rn activity concentration were carried out in 39 samples collected from the domestic and drinking water sources used in the island and mainland of Penang, northern peninsular, Malaysia. The measured activity concentrations ranged from 7.49 to 26.25 Bq l(-1), 0.49 to 9.72 Bq l(-1) and 0.58 to 2.54 Bq l(-1) in the raw, treated and bottled water samples collected, respectively. This indicated relatively high radon concentrations compared with that from other parts of the world, which still falls below the WHO recommended treatment level of 100 Bq l(-1). From this data, the age-dependent associated committed effective doses due to the ingestion of (222)Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from (222)Rn resulting from 1 y's consumption of these water were estimated to range from 0.003 to 0.048, 0.001 to 0.018 and 0.002 to 0.023 mSv y(-1), for age groups 0-1, 2-16 and >16 y, respectively.
    Matched MeSH terms: Radon/analysis*
  20. Omar M, Sulaiman I, Hassan A, Wood AK
    Radiat Prot Dosimetry, 2007;124(4):400-6.
    PMID: 17510205
    Measurements of external radiation level, radon/thoron daughters concentrations in air and uranium/thorium concentrations in airborne mineral dust at 16 amang plants in Malaysia were carried out for three consecutive months to assess radiation dose to workers. Estimated occupational dose was within the range of 1.7-10.9 mSv y(-1). The mean total dose at the amang plants was 4.1 mSv y(-1). Overall, it was found that the major dose contribution of 80% came from external radiation. Radon/thoron daughters and airborne mineral dust contributed to only 11 and 9% of the total dose, respectively.
    Matched MeSH terms: Radon Daughters/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links