Displaying publications 1 - 20 of 107 in total

  1. Dharshanan S, Hung CS
    Methods Mol. Biol., 2014;1131:105-12.
    PMID: 24515462 DOI: 10.1007/978-1-62703-992-5_7
    Generation of high-producing clones is a perquisite for achieving recombinant protein yields suitable for biopharmaceutical production. However, in many industrially important cell lines used to produce recombinant proteins such as Chinese hamster ovary, mouse myeloma line (NS0), and hybridomas, only a minority of clones show significantly above-average productivity. Thus, in order to have a reasonable probability of finding rare high-producing clones, a large number of clones need to be screened. Limiting dilution cloning is the most commonly used method, owing to its relative simplicity and low cost. However the use of liquid media in this method makes the selection of monoclonal hybridoma and transfectoma colonies to be labor intensive and time consuming, thus significantly limiting the number of clones that can be feasibly screened. Hence, we describe the use of semisolid media to immobilize clones and a high-throughput, automated colony picker (ClonePix FL) to efficiently isolate monoclonal high-producing clones secreting monoclonal antibodies.
    Matched MeSH terms: Recombinant Proteins/metabolism
  2. Lim CS, Goh SL, Krishnan G, Ng CC
    Protein Expr. Purif., 2014 Mar;95:8-12.
    PMID: 24291446 DOI: 10.1016/j.pep.2013.11.007
    This paper describes the recombinant production of a biologically active Epstein-Barr virus BZLF1 trans-activator, i.e., Z-encoded broadly reactive activator (ZEBRA), that recognized specific DNA motifs. We used auto-induction for histidine-tagged BZLF1 expression in Escherichia coli and immobilized cobalt affinity membrane chromatography for protein purification under native conditions. We obtained the purified BZLF1 at a yield of 5.4mg per gram of wet weight cells at 75% purity, in which 27% of the recombinant BZLF1 remained biologically active. The recombinant BZLF1 bound to oligonucleotides containing ZEBRA response elements, either AP-1 or ZIIIB, but not a ZIIIB mutant. The recombinant BZLF1 showed a specific DNA-binding activity which could be useful for functional studies.
    Matched MeSH terms: Recombinant Proteins/metabolism*
  3. Bayat O, Baradaran A, Ariff A, Mohamad R, Rahim RA
    Biotechnol. Lett., 2014 Mar;36(3):581-5.
    PMID: 24185903 DOI: 10.1007/s10529-013-1390-4
    Human interferon alpha (IFN-α) was expressed in two strains of Lactococcus lactis by aid of two promoters (P32 and Pnis) giving rise to two recombinant strains: MG:IFN and NZ:IFN, respectively. The expression of IFN was confirmed by ELISA and western blotting. Highest production was achieved using glucose for growth of both recombinant strains with nisin, used for induction of the recombinant strain with Pnis promoter, at 30 ng/ml. The optimum time for MG:IFN was 9 h and for NZ:IFN was 4.5 h. The highest productions by MG:IFN and NZ:IFN were 1.9 and 2.4 μg IFN/l, respectively. Both of the expressed IFNs showed bioactivities of 1.9 × 10(6) IU/mg that were acceptable for further clinical studies.
    Matched MeSH terms: Recombinant Proteins/metabolism
  4. Low KO, Muhammad Mahadi N, Md Illias R
    Appl. Microbiol. Biotechnol., 2013 May;97(9):3811-26.
    PMID: 23529680 DOI: 10.1007/s00253-013-4831-z
    Escherichia coli-the powerhouse for recombinant protein production-is rapidly gaining status as a reliable and efficient host for secretory expression. An improved understanding of protein translocation processes and its mechanisms has inspired and accelerated the development of new tools and applications in this field and, in particular, a more efficient secretion signal. Several important characteristics and requirements are summarised for the design of a more efficient signal peptide for the production of recombinant proteins in E. coli. General approaches and strategies to optimise the signal peptide, including the selection and modification of the signal peptide components, are included. Several challenges in the secretory production of recombinant proteins are discussed, and research approaches designed to meet these challenges are proposed.
    Matched MeSH terms: Recombinant Proteins/metabolism*
  5. Lau YL, Fong MY, Idris MM, Ching XT
    PMID: 23082548
    Detection of Toxoplasma gondii infection is essential in pregnant women and immunosuppressed patients. Numerous studies have shown that the recombinant production of several Toxoplasma antigens, including dense granule antigens (GRAs) has high potential as diagnostic reagents. In the present study, we produced GRA2 using Pichia pastoris system. RNA of T. gondii RH strain tachyzoite was used as a template to produce cDNA clones of full-length GRA2 via reverse transcriptase PCR. Amplicons were inserted into pPICZalpha A and the recombinant plasmid transformed into P. pastoris, X-33 strain. The expressed recombinant protein was identified by SDS-PAGE and Western blotting. A recombinant protein of -28 kDa was produced, which could be detected by toxoplasmosis positive human sera indicating that the recombinant protein retained its antigenicity. The present study indicates that P. pastoris-expressed GRA2 should be useful for detection of Toxoplasma infection.
    Matched MeSH terms: Recombinant Proteins/metabolism
  6. Low KO, Mahadi NM, Rahim RA, Rabu A, Abu Bakar FD, Murad AM, et al.
    J. Ind. Microbiol. Biotechnol., 2011 Sep;38(9):1587-97.
    PMID: 21336875 DOI: 10.1007/s10295-011-0949-0
    Direct transport of recombinant protein from cytosol to extracellular medium offers great advantages, such as high specific activity and a simple purification step. This work presents an investigation on the potential of an ABC (ATP-binding cassette) transporter system, the hemolysin transport system, for efficient protein secretion in Escherichia coli (E. coli). A higher secretory production of recombinant cyclodextrin glucanotransferase (CGTase) was achieved by a new plasmid design and subsequently by optimization of culture conditions via central composite design. An improvement of at least fourfold extracellular recombinant CGTase was obtained using the new plasmid design. The optimization process consisted of 20 experiments involving six star points and six replicates at the central point. The predicted optimum culture conditions for maximum recombinant CGTase secretion were found to be 25.76 μM IPTG, 1.0% (w/v) arabinose and 34.7°C post-induction temperature, with a predicted extracellular CGTase activity of 68.76 U/ml. Validation of the model gave an extracellular CGTase activity of 69.15 ± 0.71 U/ml, resulting in a 3.45-fold increase compared to the initial conditions. This corresponded to an extracellular CGTase yield of about 0.58 mg/l. We showed that a synergistic balance of transported protein and secretory pathway is important for efficient protein transport. In addition, we also demonstrated the first successful removal of the C-terminal secretion signal from the transported fusion protein by thrombin proteolytic cleavage.
    Matched MeSH terms: Recombinant Proteins/metabolism
  7. Goh ZH, Tan SG, Bhassu S, Tan WS
    J. Virol. Methods, 2011 Jul;175(1):74-9.
    PMID: 21536072 DOI: 10.1016/j.jviromet.2011.04.021
    Macrobrachium rosenbergii nodavirus (MrNv) infects giant freshwater prawns and causes white tail disease (WTD). The coding region of the capsid protein of MrNv was amplified with RT-PCR and cloned into the pTrcHis2-TOPO vector. The recombinant plasmid was introduced into Escherichia coli and protein expression was induced with IPTG. SDS-PAGE showed that the recombinant protein containing the His-tag and myc epitope has a molecular mass of about 46 kDa and it was detected by the anti-His antibody in Western blotting. The protein was purified using immobilized metal affinity chromatography (IMAC) and transmission electron microscopic analysis revealed that the recombinant protein assembled into virus-like particles (VLPs) with a diameter of about 30±3 nm. The size of the particles was confirmed by dynamic light scattering. Nucleic acids were extracted from the VLPs and treatment with nucleases showed that they were mainly RNA molecules. This is the first report describing the production of MrNv capsid protein in bacteria and its assembly into VLPs.
    Matched MeSH terms: Recombinant Proteins/metabolism
  8. Ng MY, Tan WS, Abdullah N, Ling TC, Tey BT
    J. Biotechnol., 2008 Nov 25;138(3-4):74-9.
    PMID: 18786579 DOI: 10.1016/j.jbiotec.2008.08.004
    Expanded bed adsorption chromatography (EBAC) is a single pass operation that has been used as primary capture step in various protein purifications. The most common problem in EBAC is often associated with successful formation of a stable fluidized bed during the absorption stage, which is critically dependent on parameters such as liquid velocity, bed height, particle (adsorbent) size and density as well as design of column and type of flow distributor. In this study, residence time distribution (RTD) test using acetone as non-binding tracer acetone was performed to evaluate liquid dispersion characteristics of the EBAC system. A high B(o) number was obtained indicating the liquid dispersion in the system employed is very minimal and the liquid flow within the bed was close to plug flow, which mimics a packed bed chromatography system. Evaluation on the effect of flow velocities and bed height on the performance of Streamline DEAE using feedstock containing heat-treated crude Escherichia coli homogenate of different biomass concentrations was carried out in this study. The advantages and disadvantages as well as the problems encountered during recovery of HBcAg with aforementioned parameters are also discussed in this paper.
    Matched MeSH terms: Recombinant Proteins/metabolism
  9. Raftari M, Ghafourian S, Abu Bakar F
    J. Appl. Microbiol., 2017 Apr;122(4):1009-1019.
    PMID: 28028882 DOI: 10.1111/jam.13388
    AIMS: This study was an attempt to create a novel milk clotting procedure using a recombinant bacterium capable of milk coagulation.

    METHODS AND RESULTS: The Rhizomucor pusillus proteinase (RPP) gene was sub-cloned into a pALF expression vector. The recombinant pALF-RPP vector was then electro-transferred into Lactococcus lactis. Finally, the milk coagulation ability of recombinant L. lactis carrying a RPP gene was evaluated. Nucleotide sequencing of DNA insertion from the clone revealed that the RPP activity corresponded to an open reading frame consisting of 1218 bp coding for a 43·45 kDa RPP protein. The RPP protein assay results indicated that the highest RPP enzyme expression with 870 Soxhlet units (SU) per ml and 7914 SU/OD were obtained for cultures which were incubated at pH 5·5 and 30°C. Interestingly, milk coagulation was observed after 205 min of inoculating milk with recombinant L. lactis carrying the RPP gene.

    CONCLUSION: The recombinant L. lactis carrying RPP gene has the ability to function as a starter culture for acidifying and subsequently coagulating milk by producing RPP as a milk coagulant agent.

    SIGNIFICANCE AND IMPACT OF THE STUDY: Creating a recombinant starter culture bacterium that is able to coagulate milk. It is significant because the recombinant L. lactis has the ability to work as a starter culture and milk coagulation agent.

    Matched MeSH terms: Recombinant Proteins/metabolism
  10. Nordin F, Ahmad RNR, Farzaneh F
    Virus Res., 2017 05 02;235:106-114.
    PMID: 28408207 DOI: 10.1016/j.virusres.2017.04.007
    Induced pluripotent stem cells (iPSC) are somatic cells reprogrammed to pluripotency by forced expression of pluripotency factors. These cells are shown to have the same pluripotent potential as embryonic stem cells (ESC) and considered as an alternative to the much controversial usage of ESC which involved human embryos. However, the traditional method in reprogramming cells into iPSC using genome-integrating retro- or lenti- viruses remains an obstacle for its application in clinical setting. Although numerous studies have been conducted for a safer DNA-based reprogramming, reprogramming of iPSC by genetic modifications may raise the possibility of malignant transformation and has been a major limitation for its usage in clinical applications. Therefore, there is a need for an alternative method to reprogram the cells without the use of gene editing and a much safer way to deliver transcription factors to induce pluripotency on target cells. Using protein transduction approach, a number of studies have demonstrated the generation of human iPSCs from human fibroblasts and mouse embryonic fibroblasts by direct delivery of reprogramming proteins. In this review, the definition and mechanism of HIV-TAT protein (a type of protein transduction domain) in delivering recombinant proteins, including the potential of protein-based delivery to induce iPSC were further discussed.
    Matched MeSH terms: Recombinant Proteins/metabolism*
  11. Khan AH, Bayat H, Rajabibazl M, Sabri S, Rahimpour A
    PMID: 27837408
    Glycosylation represents the most widespread posttranslational modifications, found in a broad spectrum of natural and therapeutic recombinant proteins. It highly affects bioactivity, site-specificity, stability, solubility, immunogenicity, and serum half-life of glycoproteins. Numerous expression hosts including yeasts, insect cells, transgenic plants, and mammalian cells have been explored for synthesizing therapeutic glycoproteins. However, glycosylation profile of eukaryotic expression systems differs from human. Glycosylation strategies have been proposed for humanizing the glycosylation pathways in expression hosts which is the main theme of this review. Besides, we also highlighted the glycosylation potential of protozoan parasites by emphasizing on the mammalian-like glycosylation potential of Leishmania tarentolae known as Leishmania expression system.
    Matched MeSH terms: Recombinant Proteins/metabolism
  12. Loh HS, Green BJ, Yusibov V
    Curr Opin Virol, 2017 10;26:81-89.
    PMID: 28800551 DOI: 10.1016/j.coviro.2017.07.019
    Production of proteins in plants for human health applications has become an attractive strategy attributed by their potentials for low-cost production, increased safety due to the lack of human or animal pathogens, scalability and ability to produce complex proteins. A major milestone for plant-based protein production for use in human health was achieved when Protalix BioTherapeutics produced taliglucerase alfa (Elelyso®) in suspension cultures of a transgenic carrot cell line for the treatment of patients with Gaucher's disease, was approved by the USA Food and Drug Administration in 2012. In this review, we are highlighting various approaches for plant-based production of proteins and recent progress in the development of plant-made therapeutics and biologics for the prevention and treatment of human diseases.
    Matched MeSH terms: Recombinant Proteins/metabolism*
  13. Chan MK, Lim SK, Miswan N, Chew AL, Noordin R, Khoo BY
    Protein Expr. Purif., 2018 Jan;141:52-62.
    PMID: 28893606 DOI: 10.1016/j.pep.2017.09.003
    This study described the isolation of the coding region of human topoisomerase I (TopoI) from MDA-MB-231 and the expression of multiple copy recombinant genes in four Pichia pastoris strains. First, polymerase chain reaction (PCR)-amplification of the enzyme coding region was performed. The PCR fragment was cloned into pPICZ-α-A vector and sequenced. It was then transformed into X33, GS115, SMD1168H and KM71H strains of Pichia. PCR-screening for positive clones was performed, and estimation of multiple copy integrants in each Pichia strain was carried out using agar plates containing increasing concentrations of Zeocin(®). The selected clones of multiple copy recombinant genes were then induced for TopoI expression in shaker flasks. GS115 and SMD1168 were found to be better Pichia strains to accommodate the recombinant gene for the expression of TopoI extracellularly. However, the DNA relaxation activity revealed that only the target enzyme in the culture supernatants of GS115-pPICZ-α-A-TopoI exhibited consistent enzyme activity over the cultivation time-points. Active enzyme activity was inhibited by Camptothecin. The enzyme produced can be used for in-house gel-based DNA relaxation assay development in performing high throughput screening for target-specific growth inhibitors that display similar effect as the TopoI inhibitors. These inhibitors may contribute to the improvement of the treatment of cancer patients.
    Matched MeSH terms: Recombinant Proteins/metabolism*
  14. Leow CH, Fischer K, Leow CY, Braet K, Cheng Q, McCarthy J
    Malar. J., 2018 Oct 24;17(1):383.
    PMID: 30355309 DOI: 10.1186/s12936-018-2531-y
    BACKGROUND: Malaria rapid diagnostic tests (RDTs) represent an important antibody based immunoassay platform. Unfortunately, conventional monoclonal antibodies are subject to degradation shortening shelf lives of RDTs. The variable region of the receptor (VNAR) from shark has a potential as alternative to monoclonal antibodies in RDTs due to high thermal stability.

    METHODS: In this study, new binders derived from shark VNAR domains library were investigated. Following immunization of a wobbegong shark (Orectolobus ornatus) with three recombinant malaria biomarker proteins (PfHRP2, PfpLDH and Pvaldolase), a single domain antibody (sdAb) library was constructed from splenocytes. Target-specific VNAR phage were isolated by panning. One specific clone was selected for expression in Escherichia coli expression system, and study of binding reactivity undertaken.

    RESULTS: The primary VNAR domain library possessed a titre of 1.16 × 106 pfu/mL. DNA sequence analysis showed 82.5% of isolated fragments appearing to contain an in-frame sequence. After multiple rounds of biopanning, a highly dominant clone specific to PfHRP2 was identified and selected for protein production in an E. coli expression system. Biological characterization showed the recombinant protein expressed in periplasmic has better detection sensitivity than that of cytoplasmic proteins. Assays of binding activity indicated that its reactivity was inferior to the positive control mAb C1-13.

    CONCLUSIONS: Target-specific bacteriophage VNARs were successfully isolated after a series of immunization, demonstrating that phage display technology is a useful tool for selection of antigen binders. Generation of new binding reagents such as VNAR antibodies that specifically recognize the malaria biomarkers represents an appealing approach to improve the performance of RDTs.

    Matched MeSH terms: Recombinant Proteins/metabolism
  15. Abu ML, Nooh HM, Oslan SN, Salleh AB
    BMC Biotechnol., 2017 Nov 10;17(1):78.
    PMID: 29126403 DOI: 10.1186/s12896-017-0397-7
    BACKGROUND: Pichia guilliermondii was found capable of expressing the recombinant thermostable lipase without methanol under the control of methanol dependent alcohol oxidase 1 promoter (AOXp 1). In this study, statistical approaches were employed for the screening and optimisation of physical conditions for T1 lipase production in P. guilliermondii.

    RESULT: The screening of six physical conditions by Plackett-Burman Design has identified pH, inoculum size and incubation time as exerting significant effects on lipase production. These three conditions were further optimised using, Box-Behnken Design of Response Surface Methodology, which predicted an optimum medium comprising pH 6, 24 h incubation time and 2% inoculum size. T1 lipase activity of 2.0 U/mL was produced with a biomass of OD600 23.0.

    CONCLUSION: The process of using RSM for optimisation yielded a 3-fold increase of T1 lipase over medium before optimisation. Therefore, this result has proven that T1 lipase can be produced at a higher yield in P. guilliermondii.

    Matched MeSH terms: Recombinant Proteins/metabolism*
  16. Chua LH, Tan SC, Liew MWO
    J. Biotechnol., 2018 Jun 20;276-277:34-41.
    PMID: 29679607 DOI: 10.1016/j.jbiotec.2018.04.012
    An intensified process was developed that enables high level production of recombinant core streptavidin (cSAV), a non-glycosylated tetrameric protein utilised in a wide range of applications. A pH-stat fed-batch feeding strategy was employed to achieve high-cell-density and improve volumetric yield of cSAV which was expressed as inclusion bodies (IBs). The effect of induction at different cell densities (OD 20, 60 and 100) on volumetric and specific yield were then studied. Highest volumetric yield of cSAV (1550 mg L-1) was obtained from induction at OD 100 without significant reductions in specific yield. To recover active cSAV from IBs, the possibility of refolding using a temperature-based refolding method was investigated. Refolded cSAV obtained from temperature-based refolding were then compared against cSAV refolded with conventional dialysis and dilution methods using quantitative and qualitative metrics. The temperature-based refolding method was found to improve the yield of cSAV by 6-18% in comparison to conventional methods without compromising quality. Intensification was achieved by reductions in process volumes and a more concentrated product stream. Using the newly developed process, the volumetric yield of cSAV IBs was improved by thirty-six fold in comparison to low-cell-density shake flask cultivation, and 33% of cSAV can be recovered from IBs at 90% purity.
    Matched MeSH terms: Recombinant Proteins/metabolism*
  17. Mohtar MA, Hernychova L, O'Neill JR, Lawrence ML, Murray E, Vojtesek B, et al.
    Mol. Cell Proteomics, 2018 04;17(4):737-763.
    PMID: 29339412 DOI: 10.1074/mcp.RA118.000573
    AGR2 is an oncogenic endoplasmic reticulum (ER)-resident protein disulfide isomerase. AGR2 protein has a relatively unique property for a chaperone in that it can bind sequence-specifically to a specific peptide motif (TTIYY). A synthetic TTIYY-containing peptide column was used to affinity-purify AGR2 from crude lysates highlighting peptide selectivity in complex mixtures. Hydrogen-deuterium exchange mass spectrometry localized the dominant region in AGR2 that interacts with the TTIYY peptide to within a structural loop from amino acids 131-135 (VDPSL). A peptide binding site consensus of Tx[IL][YF][YF] was developed for AGR2 by measuring its activity against a mutant peptide library. Screening the human proteome for proteins harboring this motif revealed an enrichment in transmembrane proteins and we focused on validating EpCAM as a potential AGR2-interacting protein. AGR2 and EpCAM proteins formed a dose-dependent protein-protein interaction in vitro Proximity ligation assays demonstrated that endogenous AGR2 and EpCAM protein associate in cells. Introducing a single alanine mutation in EpCAM at Tyr251 attenuated its binding to AGR2 in vitro and in cells. Hydrogen-deuterium exchange mass spectrometry was used to identify a stable binding site for AGR2 on EpCAM, adjacent to the TLIYY motif and surrounding EpCAM's detergent binding site. These data define a dominant site on AGR2 that mediates its specific peptide-binding function. EpCAM forms a model client protein for AGR2 to study how an ER-resident chaperone can dock specifically to a peptide motif and regulate the trafficking a protein destined for the secretory pathway.
    Matched MeSH terms: Recombinant Proteins/metabolism
  18. Escaffre O, Hill T, Ikegami T, Juelich TL, Smith JK, Zhang L, et al.
    J. Infect. Dis., 2018 10 05;218(10):1602-1610.
    PMID: 29912426 DOI: 10.1093/infdis/jiy357
    Background: Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small-particle aerosol exposure is still limited.

    Methods: Infectivity, pathogenicity, and real-time dissemination of aerosolized NiV in Syrian hamsters was evaluated using NiV-Malaysia (NiV-M) and/or its recombinant expressing firefly luciferase (rNiV-FlucNP).

    Results: Both viruses had an equivalent pathogenicity in hamsters, which developed respiratory and neurological symptoms of disease, similar to using intranasal route, with no direct correlations to the dose. We showed that virus replication was predominantly initiated in the lower respiratory tract and, although delayed, also intensely in the oronasal cavity and possibly the brain, with gradual increase of signal in these regions until at least day 5-6 postinfection.

    Conclusion: Hamsters infected with small-particle aerosolized NiV undergo similar clinical manifestations of the disease as previously described using liquid inoculum, and exhibit histopathological lesions consistent with NiV patient reports. NiV droplets could therefore play a role in transmission by close contact.

    Matched MeSH terms: Recombinant Proteins/metabolism
  19. Batumalaie K, Khalili E, Mahat NA, Huyop F, Wahab RA
    Biochimie, 2018 Sep;152:198-210.
    PMID: 30036604 DOI: 10.1016/j.biochi.2018.07.011
    Spectroscopic and calorimetric methods were employed to assess the stability and the folding aspect of a novel recombinant alkaline-stable lipase KV1 from Acinetobacter haemolyticus under varying pH and temperature. Data on far ultraviolet-circular dichroism of recombinant lipase KV1 under two alkaline conditions (pH 8.0 and 12.0) at 40 °C reveal strong negative ellipticities at 208, 217, 222 nm, implying its secondary structure belonging to a α + β class with 47.3 and 39.0% ellipticity, respectively. Results demonstrate that lipase KV1 adopts its most stable conformation at pH 8.0 and 40 °C. Conversely, the protein assumes a random coil structure at pH 4.0 and 80 °C, evident from a strong negative peak at ∼ 200 nm. This blue shift suggests a general decline in enzyme activity in conjunction with the partially or fully unfolded state that invariably exposed more hydrophobic surfaces of the lipase protein. The maximum emission at ∼335 nm for pH 8.0 and 40 °C indicates the adoption of a favorable protein conformation with a high number of buried tryptophan residues, reducing solvent exposure. Appearance of an intense Amide I absorption band at pH 8.0 corroborates an intact secondary structure. A lower enthalpy value for pH 4.0 over pH 8.0 and 12.0 in the differential scanning calorimetric data corroborates the stability of the lipase at alkaline conditions, while a low Km (0.68 ± 0.03 mM) for tributyrin verifies the high affinity of lipase KV1 for the substrate. The data, herein offer useful insights into future structure-based tunable catalytic activity of lipase KV1.
    Matched MeSH terms: Recombinant Proteins/metabolism
  20. Kalhori N, Nulit R, Go R
    Protein J., 2013 Oct;32(7):551-9.
    PMID: 24132392 DOI: 10.1007/s10930-013-9516-z
    Pentose phosphate pathway (PPP) composed of two functionally-connected phases, the oxidative and non-oxidative phase. Both phases catalysed by a series of enzymes. Transketolase is one of key enzymes of non-oxidative phase in which transfer two carbon units from fructose-6-phosphate to erythrose-4-phosphate and convert glyceraldehyde-3-phosphate to xylulose-5-phosphate. In plant, erythrose-4-phosphate enters the shikimate pathway which is produces many secondary metabolites such as aromatic amino acids, flavonoids, lignin. Although transketolase in plant system is important, study of this enzyme is still limited. Until to date, TKT genes had been isolated only from seven plants species, thus, the aim of present study to isolate, study the similarity and phylogeny of transketolase from sugarcane. Unlike bacteria, fungal and animal, PPP is complete in the cytosol and all enzymes are found cytosolic. However, in plant, the oxidative phase found localised in the cytosol but the sub localisation for non-oxidative phase might be restricted to plastid. Thus, this study was conducted to determine subcellular localization of sugarcane transketolase. The isolation of sugarcane TKT was done by reverse transcription polymerase chain reaction, followed by cloning into pJET1.2 vector and sequencing. This study has isolated 2,327 bp length of sugarcane TKT. The molecular phylogenetic tree analysis found that transketolase from sugarcane and Zea mays in one group. Classification analysis found that both plants showed closer relationship due to both plants in the same taxon i.e. family Poaceae. Target P 1.1 and Chloro P predicted that the compartmentation of sugarcane transketolase is localised in the chloroplast which is 85 amino acids are plant plastid target sequence. This led to conclusion that the PPP is incomplete in the cytosol of sugarcane. This study also found that the similarity sequence of sugarcane TKT closely related with the taxonomy plants.
    Matched MeSH terms: Recombinant Proteins/metabolism
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links