Displaying all 11 publications

Abstract:
Sort:
  1. Sirat HM, Jamil S, Rahman AA
    Nat Prod Commun, 2009 Sep;4(9):1171.
    PMID: 19831021
    From the rhizomes of Curcuma ochrorhiza, four sesquiterpenes, isofuranodiene, germacrene, furanogermenone and zederone, have been isolated, the structures of which have been elucidated by spectroscopic methods.
    Matched MeSH terms: Sesquiterpenes, Germacrane/isolation & purification*; Sesquiterpenes, Germacrane/chemistry
  2. Salleh WMNHW, Shakri NM, Khamis S, Setzer WN, Nadri MH
    Nat Prod Res, 2020 Sep 14.
    PMID: 32927975 DOI: 10.1080/14786419.2020.1819274
    This study aims to assess the chemical compositions of the essential oils from three Horsfieldia species namely H. fulva Warb., H. sucosa Warb. and H. superba Warb., which are found in Malaysia. The essential oils were derived from the samples through hydrodistillation which were then characterised by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Based on the findings, the H. fulva, H. sucosa and H. superba essential oils represented 98.2%, 98.7% and 98.5% of the total oils, respectively. The major component of H. fulva oil was identified to be germacrene D (20.8%), H. sucosa oil mainly contained α-cadinol (17.5%), whereas H. superba oil was rich in δ-cadinene (18.2%). To the best of our knowledge, this is the first study of the composition of the essential oils from these selected Horsfieldia species.
    Matched MeSH terms: Sesquiterpenes, Germacrane
  3. Shakri NM, Salleh WMNHW, Khamis S, Mohamad Ali NA
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):485-488.
    PMID: 32966236 DOI: 10.1515/znc-2020-0090
    This study was aimed to investigate the chemical compositions of the essential oils from Goniothalamus macrophyllus and Goniothalamus malayanus growing in Malaysia. The essential oils were obtained by hydrodistillation and fully characterized by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Analyses of the essential oils from G. macrophyllus and G. malayanus resulted in 93.6 and 95.4% of the total oils, respectively. The major components of G. macrophyllus oil were germacrene D (25.1%), bicyclogermacrene (11.6%), α-copaene (6.9%) and δ-cadinene (6.4%), whereas in G. malayanus oil bicyclogermacrene (43.9%), germacrene D (21.1%) and β-elemene (8.4%) were the most abundant components.
    Matched MeSH terms: Sesquiterpenes, Germacrane/isolation & purification; Sesquiterpenes, Germacrane/chemistry
  4. Salleh WMNHW, Khamis S, Nafiah MA, Abed SA
    Nat Prod Res, 2021 Jun;35(11):1887-1892.
    PMID: 31293176 DOI: 10.1080/14786419.2019.1639183
    This study was designed to examine the chemical composition and anticholinesterase inhibitory activity of the essential oil of Pseuduvaria macrophylla (Oliv.) Merr. (Annonaceae) from Malaysia. The essential oil was obtained by hydrodistillation and fully analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The analysis led to the identification of thirty-four chemical components that represented 87.7 ± 0.5% of the total oil. The essential oil was found to be rich in germacrene D (21.1 ± 0.4%), bicyclogermacrene (10.5 ± 0.5%), δ-cadinene (5.6 ± 0.2%), α-copaene (5.1 ± 0.3%), and α-cadinol (5.0 ± 0.3%). Anticholinesterase activity was evaluated using Ellman method. The essential oil showed weak inhibitory activity against acetylcholinesterase (I%: 32.5%) and butyrylcholinesterase (I%: 35.4%) assays. Our findings demonstrate that the essential oil could be very useful for the characterization, pharmaceutical and therapeutic applications of the essential oil from Pseuduvaria macrophylla.
    Matched MeSH terms: Sesquiterpenes, Germacrane/pharmacology; Sesquiterpenes, Germacrane/chemistry
  5. Shakri NM, Salleh WMNHW, Khamis S, Mohamad Ali NA, Nadri MH
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):479-484.
    PMID: 32960782 DOI: 10.1515/znc-2020-0096
    The rich and diversified Malaysian flora represents an excellent resource of new chemical structures with biological activities. The genus Xylopia L. includes aromatic plants that have both nutritional and medicinal uses. This study aims to contribute with information about the volatile components of three Xylopia species essential oils: Xylopia frutescens, Xylopia ferruginea, and Xylopia magna. In this study, essential oils were extracted from the leaves by a hydrodistillation process. The identification of the essential oil components was performed by gas chromatography (GC-FID) and gas chromatography-coupled mass spectrometry (GC-MS). The major components of the essential oils from X. frutescens were bicyclogermacrene (22.8%), germacrene D (14.2%), elemol (12.8%), and guaiol (12.8%), whereas components of the essential oils from X. magna were germacrene D (35.9%), bicyclogermacrene (22.8%), and spathulenol (11.1%). The X. ferruginea oil was dominated by bicyclogermacrene (23.6%), elemol (13.7%), guaiol (13.4%), and germacrene D (12.3%).
    Matched MeSH terms: Sesquiterpenes, Germacrane/isolation & purification; Sesquiterpenes, Germacrane/chemistry
  6. Shakri NM, Salleh WMNHW, Khamis S, Mohamad Ali NA, Shaharudin SM
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):473-478.
    PMID: 32628641 DOI: 10.1515/znc-2020-0097
    Polyalthia is one of the largest genera in the Annonaceae family, and has been widely used in folk medicine for the treatment of rheumatic fever, gastrointestinal ulcer, and generalized body pain. The present investigation reports on the extraction by hydrodistillation and the composition of the essential oils of four Polyalthia species (P. sumatrana, P. stenopetalla, P. cauliflora, and P. rumphii) growing in Malaysia. The chemical composition of these essential oils was determined by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The multivariate analysis was determined using principal component analysis (PCA) and hierarchical clustering analysis (HCA) methods. The results revealed that the studied essential oils are made up principally of bicyclogermacrene (18.8%), cis-calamenene (14.6%) and β-elemene (11.9%) for P. sumatrana; α-cadinol (13.0%) and δ-cadinene (10.2%) for P. stenopetalla; δ-elemene (38.1%) and β-cubebene (33.1%) for P. cauliflora; and finally germacrene D (33.3%) and bicyclogermacrene for P. rumphii. PCA score and HCA plots revealed that the essential oils were classified into three separated clusters of P. cauliflora (Cluster I), P. sumatrana (Cluster II), and P. stenopetalla, and P. rumphii (Cluster III) based on their characteristic chemical compositions. Our findings demonstrate that the essential oil could be useful for the characterization, pharmaceutical, and therapeutic applications of Polyalthia essential oil.
    Matched MeSH terms: Sesquiterpenes, Germacrane/chemistry
  7. Salleh WMNHW, Anuar MZA, Khamis S, Nafiah MA, Sul'ain MD
    Nat Prod Res, 2021 Jul;35(13):2279-2284.
    PMID: 31544509 DOI: 10.1080/14786419.2019.1669027
    The chemical composition of the essential oil of Knema kunstleri Warb. (Myristicaceae) was investigated for the first time. The essential oil was obtained by hydrodistillation and fully characterized by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 36 components were identified in the essential oil, which made up 91.7% of the total oil. The essential oil is composed mainly of β-caryophyllene (23.2%), bicyclogermacrene (9.6%), δ-cadinene (7.3%), α-humulene (5.7%), and germacrene D (4.3%). The essential oil showed moderate activity towards DPPH free-radical scavenging and lipoxygenase inhibition. To the best of our knowledge, this is the first study of the composition and bioactivities of the essential oil report concerning the genus Knema.
    Matched MeSH terms: Sesquiterpenes, Germacrane/analysis
  8. Sanimah Simoh, Sew YS, Fazri Abd Rahim, Muhammad Aizuddin Ahmad, Alizah Zainal
    Sains Malaysiana, 2018;47:3031-3041.
    A comparative analysis of metabolites from different parts of Curcuma aeruginosa, i.e. leaves, stems, adventitious
    roots and rhizomes was performed by GC-MS/MS coupled with multivariate statistical analysis. The GC-MS/MS analysis
    confirmed the occurrence of 26 metabolites belonged to terpenoids in almost all the samples. The Principal Component
    Analysis (PCA) indicated that there was a clear distinction between rhizomes and other plant parts, i.e. stems, leaves,
    and adventitious roots that could be explained by relatively higher contents of terpenoids including curzerene, alphafarnesen, furanocoumarin, velleral, germacrone cineole, borneol, beta- and gamma- elemene and methenolone. The
    results of Hierarchical Clustering Analyses (HCA) corresponded with the PCA results where many terpenoids found
    abundantly high in rhizome were clustered together. This was supported by the Pearson correlation analysis that
    showed a significantly good relationship between those terpenoids. The adventitious roots demonstrated the strongest
    antioxidant activity as compared to the other plant parts which could be attributed to its highest Total Phenolic
    Contents (TPC). Total phenolic contents of all the plant parts were positively correlated with their antioxidant activities
    which indicate that phenolic compounds may play a role in the overall antioxidant activities of the plants. The results
    of the study highlighted the potential of this underexploited Curcuma species which could serve as a new source of
    important phytochemicals and natural antioxidant that could be incorporated in functional foods and nutraceuticals.
    In addition, chemical and biological evidence shown in the present work has rationalised the different uses of various
    plant parts of C. aeruginosa.
    Matched MeSH terms: Sesquiterpenes, Germacrane
  9. Hong SL, Lee GS, Syed Abdul Rahman SN, Ahmed Hamdi OA, Awang K, Aznam Nugroho N, et al.
    ScientificWorldJournal, 2014;2014:397430.
    PMID: 25177723 DOI: 10.1155/2014/397430
    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death.
    Matched MeSH terms: Sesquiterpenes, Germacrane/analysis
  10. Salleh WM, Ahmad F, Yen KH, Sirat HM
    Int J Mol Sci, 2011;12(11):7720-31.
    PMID: 22174627 DOI: 10.3390/ijms12117720
    Chemical composition, antioxidant and antimicrobial activities of the fresh leaves and stems oils of Piper caninum were investigated. A total of forty eight constituents were identified in the leaves (77.9%) and stems (87.0%) oil which were characterized by high proportions of phenylpropanoid, safrole with 17.1% for leaves and 25.5% for stems oil. Antioxidant activities were evaluated by using β-carotene/linoleic acid bleaching, DPPH radical scavenging and total phenolic content. Stems oil showed the highest inhibitory activity towards lipid peroxidation (114.9 ± 0.9%), compared to BHT (95.5 ± 0.5%), while leaves oil showed significant total phenolic content (27.4 ± 0.5 mg GA/g) equivalent to gallic acid. However, the essential oils showed weak activity towards DPPH free-radical scavenging. Evaluation of antimicrobial activity revealed that both oils exhibited strong activity against all bacteria strains with MIC values in the range 62.5 to 250 μg/mL, but weak activity against fungal strains. These findings suggest that the essential oils can be used as antioxidant and antimicrobial agents for therapeutic, nutraceutical industries and food manufactures.
    Matched MeSH terms: Sesquiterpenes, Germacrane/analysis
  11. Tan WN, Tan ZH, Zulkifli NI, Nik Mohamed Kamal NNS, Rozman NAS, Tong WY, et al.
    Nat Prod Res, 2020 Dec;34(23):3404-3408.
    PMID: 30773054 DOI: 10.1080/14786419.2019.1569012
    Garcinia celebica L., locally known as "manggis hutan" in Malaysia is widely used in folkloric medicine to treat various diseases. The present study was aimed to examine the chemical composition of the essential oil from the leaves of G. celebica L. (EO-GC) and its cytotoxic and antimicrobial potential. EO-GC obtained by hydrodistillation was analysed using capillary GC and GC-MS. Twenty-two compounds were identified, dominated by α-copaene (61.25%), germacrene D (6.72%) and β-caryophyllene (5.85%). In the in vitro MTT assay, EO-GC exhibited significant anti-proliferative effects towards MCF-7 human breast cancer cells with IC50 value of 45.2 μg/mL. Regarding the antimicrobial activity, it showed better inhibitory effects on Gram-positive bacteria than Gram-negative bacteria and none on the fungi and yeasts tested.
    Matched MeSH terms: Sesquiterpenes, Germacrane/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links