METHODS: These plants were collected, identified and the extracts were prepared by using conventional Soxhlet ethanol extraction technique. The venom neutralization activity was accessed in mice (20-25g) and number of mortalities was observed against clinically important snake (Naja nigricollis) venom. Present study also deals with in vitro membrane stabilizing activity of these plants against hyposaline induced human red blood corpuscles (HRBC).
RESULTS: Extracts of H. javanica and G. superba gave 80 % and 90 % protection to mice treated with minimum lethal dose of venom (LD(99)). These two plants showed significant neutralization effect against the venoms of Naja nigricollis venom. H. javanica and G. superba (25-100 mg/mL) produced significant changes of membrane stabilization of human red blood cells (HRBC) exposed to hyposaline-induced haemolysis.
CONCLUSIONS: We conclude that probably due to presence of various phytochemicals plays an important role in the anti-venom potential of these Indian medicinal plants against Naja nigricollis venom. The above observations confirmed that A. paniculata, C. magna, G. superba and H. javanica plant extracts possess potent snake venom neutralizing capacity and could potentially be used as an adjuvants for antivenin therapy in case of snakebite envenomation, especially against the local effects of cobra venoms.
METHODS: This was a 4-year cross-sectional study of snakebite patients from January 2013 to December 2016 in Hospital Sultanah Nur Zahirah (HSNZ), Terengganu. Data was extracted from the Pharmacy Record on the usage of antivenom and patients of snakebites treated with antivenom were identified. Data of patients were then obtained from the electronic medical records.' Demographic details, clinical features and characteristics of antivenom reactions of patients were recorded in standardized data collection forms and analyzed using chi-square or Mann- Whitney U tests.
RESULTS: Of the 44 patients who received antivenom, 24 (54.5%) developed hypersensitivity reaction. All patients developed reaction early. No patient developed delayed (serum-sickness) reaction. Of the 24 patients, 14 (58.3%) had moderate to severe hypersensitivity reaction and 9 (37.5%) patients had mild reactions. Only one (4.2%) patient presented with bradycardia.
CONCLUSION: The prevalence of early hypersensitivity reaction to snake antivenom in HSNZ was relatively high. Healthcare providers should be aware of the appropriate method of preparing and administering antivenom, and the management for acute hypersensitivity reactions. This will optimize the management of snakebite and ensure patient safety.
MATERIALS AND METHODS: Snakebite patients were prospectively recruited between 2017 and 2019. All patients were examined with POCUS to locate edema and directly visualize and measure the arterial flow in the compressed artery. The presence of DRAF in the compressed artery is suggestive of ACS development because when compartment space restriction occurs, increased retrograde arterial flow is observed in the artery.
RESULTS: Twenty-seven snakebite patients were analyzed. Seventeen patients (63%) were bitten by Crotalinae snakes, seven (26%) by Colubridae, one (4%) by Elapidae, and two (7%) had unidentified snakebites. All Crotalinae bit patients received antivenom, had subcutaneous edema and lacked DRAF in a POCUS examination series.
DISCUSSION: POCUS facilitates clinical decisions for snakebite envenomation. We also highlighted that the anatomic site of the snakebite is an important factor affecting the prognosis of the wounds. There were limitations of this study, including a small number of patients and no comparison with the generally accepted invasive evaluation for ACS.
CONCLUSIONS: We are unable to state that POCUS is a valid surrogate measurement of ACS from this study but see this as a starting point to develop further research in this area. Further study will be needed to better define the utility of POCUS in patients envenomated by snakes throughout the world.