Displaying publications 1 - 20 of 59 in total

Abstract:
Sort:
  1. Yu K, Wang C, Maddison WP, Zhang J
    Zootaxa, 2023 Jan 31;5231(3):201-248.
    PMID: 37045149 DOI: 10.11646/zootaxa.5231.3.1
    Two new genera of euophryine jumping spiders in the Laufeia group are established for species from Southeast Asia: Amoenema Yu & Zhang, gen. nov. and Lokina Yu, Maddison & Zhang, gen. nov., with descriptions of 12 new species: Amoenema erhai Yu & Zhang, sp. nov. (♂♀, type species), A. liuae Yu & Zhang, sp. nov. (♂♀), A. zizhongi Yu & Zhang, sp. nov. (♂♀), Lokina blombergi Yu, Maddison & Zhang, sp. nov. (♂♀), L. chiyou Yu & Zhang, sp. nov. (♂♀, type species), L. fuxi Yu & Zhang, sp. nov. (♂♀), L. kubah Yu, Maddison & Zhang, sp. nov. (♂), L. nyuewa Yu & Zhang, sp. nov. (♂♀), L. pixi Yu, Maddison & Zhang, sp. nov. (♂), L. tamasi Yu & Zhang, sp. nov. (♂♀), L. wuyi Yu & Zhang, sp. nov. (♂), L. zhishengi Yu & Zhang, sp. nov. (♂). In addition, three new combinations are proposed: Amoenema robusta (Lei & Peng, 2012) comb. nov. (transferred from Euophrys C. L. Koch, 1834), Lokina eximia (Zhang & Maddison, 2012) comb. nov. (transferred from Laufeia Simon, 1889) and L. tengchongensis (Lei & Peng, 2012) comb. nov. (transferred from Chalcovietnamicus Marusik, 1991).
    Matched MeSH terms: Spiders*
  2. Mohtar JA, Shahimin MFM
    Dev Genes Evol, 2022 Dec;232(5-6):125-136.
    PMID: 36190549 DOI: 10.1007/s00427-022-00697-0
    Spiders have emerged as one of the leading model organisms in many research fields due to their compelling biology. Often, scientific investigations involving the use of spiders face inevitable problems associated with the lack of specimens from laboratory stock, resulting in difficulties in yielding reproducible investigations for predictive research. Thus, several species of well-studied spiders, including Parasteatoda tepidariorum, have been successfully bred for such purposes. Crossopriza lyoni is a Haplogyne spider, globally distributed and widespread in human inhabitants, prompting interest in various studies over the last decades. Despite its scientific importance, no laboratory-bred C. lyoni has been documented. Therefore, we describe a successful captive breeding system of the species under controlled conditions to establish a laboratory stock culture. Methods for mating induction, egg collection and segregation, artificial embryo incubation, and colony husbandry are discussed. The technique presented is a simple and low-cost approach that is reliable for C. lyoni propagation in the laboratory over several generations.
    Matched MeSH terms: Spiders*
  3. Yong HS, Song SL, Chua KO, Wayan Suana I, Eamsobhana P, Tan J, et al.
    Sci Rep, 2021 May 21;11(1):10680.
    PMID: 34021208 DOI: 10.1038/s41598-021-90162-1
    Spiders of the genera Nephila and Trichonephila are large orb-weaving spiders. In view of the lack of study on the mitogenome of these genera, and the conflicting systematic status, we sequenced (by next generation sequencing) and annotated the complete mitogenomes of N. pilipes, T. antipodiana and T. vitiana (previously N. vitiana) to determine their features and phylogenetic relationship. Most of the tRNAs have aberrant clover-leaf secondary structure. Based on 13 protein-coding genes (PCGs) and 15 mitochondrial genes (13 PCGs and two rRNA genes), Nephila and Trichonephila form a clade distinctly separated from the other araneid subfamilies/genera. T. antipodiana forms a lineage with T. vitiana in the subclade containing also T. clavata, while N. pilipes forms a sister clade to Trichonephila. The taxon vitiana is therefore a member of the genus Trichonephila and not Nephila as currently recognized. Studies on the mitogenomes of other Nephila and Trichonephila species and related taxa are needed to provide a potentially more robust phylogeny and systematics.
    Matched MeSH terms: Spiders/classification*; Spiders/genetics*
  4. Zhu W, Li S
    Zootaxa, 2021 Apr 16;4963(1):zootaxa.4963.1.5.
    PMID: 33903565 DOI: 10.11646/zootaxa.4963.1.5
    Six new species belonging to Belisana Thorell, 1898 are described from Southeast Asia: Belisana bachma sp. nov. (Vietnam; male, female), B. cucphuong sp. nov. (Vietnam; male, female), B. jaegeri sp. nov. (Malaysia; male, female), B. kachin sp. nov. (Myanmar; male, female), B. putao sp. nov. (Myanmar; male) and B. tarang sp. nov. (Indonesia; male, female). These new species bring the total number of Belisana to 143 species worldwide.
    Matched MeSH terms: Spiders
  5. Farida Hamimi Ahmad Dasran, Nursyazni Abdul Rahim
    MyJurnal
    UiTM Negeri Sembilan Kuala Pilah Campus Forest Reserve was a lowland rainforest canopy located in Kampung Beting, Kuala Pilah, which hold various habitats for a wide range of organisms. Many of the species, however, were poorly known and documented. Therefore, a preliminary study was conducted to record the diversity of spider fauna in UiTM Kuala Pilah Campus Forest Reserve in two separate areas using three different methods: hand picking, net sweeping and pitfall traps. The present study resulted in 85 samples of spiders from seven families (Araneidae, Ctenidae, Eutichuridae. Oxyopidae, Pholcidae, Salticidae, and Sparassidae) and 13 genera. There were 29 individuals from four families collected from Site A, and 56 individuals from seven families collected from Site B. Salticidae spiders had dominated both sites with 62% of total samples collected. The second dominant family was Araneidae, which constituted 15% of the samples, followed by Ctenidae (6%), Oxyopidae (6%), Eutichuridae (5%), Sparassidae (4%), and Pholcidae (2%). This ecosystem’s spider fauna was qualitatively rich due to diverse microhabitats that represented the high flora and fauna diversity in UiTM Negeri Sembilan Kuala Pilah Campus Forest Reserve. However, the study did not reflect the full spider inventory as fewer sampling periods and areas were conducted. Therefore, additional sampling activities and study periods are anticipated to submit to the inventory of the organisms.
    Matched MeSH terms: Spiders
  6. Hashimoto Y, Endo T, Yamasaki T, Hyodo F, Itioka T
    Sci Rep, 2020 10 26;10(1):18279.
    PMID: 33106531 DOI: 10.1038/s41598-020-75010-y
    Accurate morphological ant mimicry by Myrmarachne jumping spiders confers strong protective benefits against predators. However, it has been hypothesized that the slender and constricted ant-like appearance imposes costs on the hunting ability because their jumping power to capture prey is obtained from hydraulic pressure in their bodies. This hypothesis remains to be sufficiently investigated. We compared the jumping and prey-capture abilities of seven Myrmarachne species and non-myrmecomorphic salticids collected from tropical forests in Malaysian Borneo and northeastern Thailand. We found that the mimics had significantly reduced abilities compared with the non-mimics. The analysis using geometric morphometric techniques revealed that the reduced abilities were strongly associated with the morphological traits for ant mimicry and relatively lower abilities were found in Myrmarachne species with a more narrowed form. These results support the hypothesis that the jumping ability to capture prey is constrained by the morphological mimicry and provide a new insight into understanding the evolutionary costs of accurate mimicry.
    Matched MeSH terms: Spiders/physiology*
  7. JÄger P
    Zootaxa, 2020 Oct 22;4866(1):zootaxa.4866.1.1.
    PMID: 33311200 DOI: 10.11646/zootaxa.4866.1.1
    The genus Olios Walckenaer, 1837 is revised, a generic diagnosis is given and an identification key to eight species groups is provided. Olios in its revised sense includes 87 species and is distributed in Africa, southern Europe and Asia. Three species groups are revised in this first part, an identification key to species for each group is provided, five new species are described and all included species are illustrated. The Olios argelasius-group includes O. argelasius Walckenaer, 1806, O. canariensis (Lucas, 1838), O. pictus (Simon, 1885), O. fasciculatus Simon, 1880 and O. kunzi spec. nov. (male, female; Namibia, Zambia, South Africa); it is distributed in the Mediterranean region, northern Africa including Canary Islands, in the Middle East, South Sudan, East Africa, and southern Africa. The Olios coenobitus-group includes O. angolensis spec. nov. (male; Angola), O. coenobitus Fage, 1926, O. denticulus spec. nov. (male; Java), O. erraticus Fage, 1926, O. gambiensis spec. nov. (male, female; Gambia), O. milleti (Pocock, 1901b), O. mordax (O. Pickard-Cambridge, 1899) and O. pusillus Simon, 1880; it is distributed in Africa (Gambia, Angola, Tanzania, Madagascar) and Asia (India, Sri Lanka, Indonesia: Java). The Olios auricomis-group includes only O. auricomis (Simon, 1880), distributed in Africa south of 10°N. Other species groups are introduced briefly and will be revised in forthcoming revisions. The Olios correvoni-group includes currently O. claviger (Pocock, 1901a), O. correvoni Lessert, 1921, O. correvoni choupangensis Lessert, 1936, O. darlingi (Pocock, 1901a), O. faesi Lessert, 1933, O. freyi Lessert, 1929, O. kassenjicola Strand, 1916b, O. kruegeri (Simon, 1897a), O. quadrispilotus (Simon, 1880) comb. nov., O. lucieni comb. nov. nom. nov., O. sjostedti Lessert, 1921 and O. triarmatus Lessert, 1936; it is distributed in Africa (Zimbabwe, Tanzania incl. Zanzibar, Angola, Congo, Central Africa, South Africa, Botswana; O. darlingi was recorded from Zimbabwe and Botswana and not from South Africa). The Olios rossettii-group includes: O. baulnyi (Simon, 1874), O. bhattacharjeei (Saha Raychaudhuri, 2007), O. brachycephalus Lawrence, 1938, O. floweri Lessert, 1921, O. jaldaparaensis Saha Raychaudhuri, 2007, O. japonicus Jäger Ono, 2000, O. kolosvaryi (Caporiacco, 1947b) comb. nov., O. longipes (Simon, 1884b), O. lutescens (Thorell, 1894), O. mahabangkawitus Barrion Litsinger, 1995, O. obesulus (Pocock, 1901b), O. rossettii (Leardi, 1901), O. rotundiceps (Pocock, 1901b), O. sericeus (Kroneberg, 1875), O. sherwoodi Lessert, 1929, O. suavis (O. Pickard-Cambridge, 1876), O. tarandus (Simon, 1897d), O. tener (Thorell, 1891) and O. tiantongensis (Zhang Kim, 1996); it is distributed in the Mediterranean region, in Africa (especially eastern half) and Asia (Middle East and Central Asia to Japan, Philippines and Java). The Olios nentwigi-group includes O. diao Jäger, 2012, O. digitatus Sun, Li Zhang, 2011, O. jaenicke Jäger, 2012, O. muang Jäger, 2012, O. nanningensis (Hu Ru, 1988), O. nentwigi spec. nov. (male, female; Indonesia: Krakatau), O. perezi Barrion Litsinger, 1995, O. scalptor Jäger Ono, 2001 and O. suung Jäger, 2012; it is distributed in Asia (Thailand, Laos, Vietnam, Cambodia, China, Taiwan, Indonesia, Philippines), Papua New Guinea and Mariana Islands. Olios diao is newly recorded from Cambodia and Champasak Province in Laos. The Olios stimulator-group includes O. admiratus (Pocock, 1901b), O. hampsoni (Pocock, 1901b), O. lamarcki (Latreille, 1806) and O. stimulator Simon, 1897c; it is distributed in Africa (Madagascar, Seychelles), Middle East and South Asia (United Arab Emirates, Iraq, Afghanistan, Pakistan, India, Maldives, Sri Lanka). The Olios hirtus-group includes O. bungarensis Strand, 1913b, O. debalae (Biswas Roy, 2005), O. ferox (Thorell, 1892), O. hirtus (Karsch, 1879a), O. igraya (Barrion Litsinger, 1995) comb. nov., O. menghaiensis (Wang Zhang, 1990), O. nigrifrons (Simon, 1897b), O. punctipes Simon, 1884a, O. punctipes sordidatus (Thorell, 1895), O. pyrozonis (Pocock, 1901b), O. sungaya (Barrion Litsinger, 1995) comb. nov., O. taprobanicus Strand, 1913b and O. tikaderi Kundu et al., 1999; it is distributed in South, East and Southeast Asia (Sri Lanka, India, Nepal, Bangladesh, Myanmar, China, Laos, Thailand, Cambodia, Vietnam, Malaysia, Indonesia, Philippines). Nineteen synonyms are recognised: Nisueta Simon, 1880, Nonianus Simon, 1885, both = Olios syn. nov.; O. spenceri Pocock, 1896, O. werneri (Simon, 1906a), O. albertius Strand, 1913a, O. banananus Strand, 1916a, O. aristophanei Lessert, 1936, all = O. fasciculatus; O. subpusillus Strand, 1907c = O. pusillus; O. schonlandi (Pocock, 1900b), O. rufilatus Pocock, 1900c, O. chiracanthiformis Strand, 1906, O. ituricus Strand, 1913a, O. isongonis Strand, 1915, O. flavescens Caporiacco, 1941 comb. nov., O. pacifer Lessert, 1921, all = O. auricomis; Olios sanguinifrons (Simon, 1906b) = O. rossettii Leardi, 1901; O. phipsoni (Pocock, 1899), Sparassus iranii (Pocock, 1901b), both = O. stimulator; O. fuligineus (Pocock, 1901b) = O. hampsoni. Nine species are transferred to Olios: O. gaujoni (Simon, 1897b) comb. nov., O. pictus comb. nov., O. unilateralis (Strand, 1908b) comb. nov. (all three from Nonianus), O. affinis (Strand, 1906) comb. nov., O. flavescens Caporiacco, 1941 comb. nov., O. quadrispilotus comb. nov., O. similis (Berland, 1922) comb. nov. (all four from Nisueta), O. sungaya (Barrion Litsinger, 1995) comb. nov., O. igraya (Barrion Litsinger, 1995) comb. nov. (both from Isopeda L. Koch 1875). Olios lucieni nom. nov. comb. nov. is proposed for Nisueta similis Berland, 1922, which becomes a secondary homonym. The male of O. quadrispilotus comb. nov. is described for the first time. Sixteen species are currently without affiliation to one of the eight species groups: O. acolastus (Thorell, 1890), O. alluaudi Simon, 1887a, O. batesi (Pocock, 1900c), O. bhavnagarensis Sethi Tikader, 1988, O. croseiceps (Pocock, 1898b), O. durlaviae Biswas Raychaudhuri, 2005, O. gentilis (Karsch, 1879b), O. gravelyi Sethi Tikader, 1988, O. greeni (Pocock, 1901b), O. inaequipes (Simon 1890), O. punjabensis Dyal, 1935, O. ruwenzoricus Strand, 1913a, O. senilis Simon, 1880, O. somalicus Caporiacco, 1940, O. wroughtoni (Simon, 1897c) and O. zulu Simon, 1880. Five of these species are illustrated in order to allow identification of the opposite (male) sex and to settle their systematic placement. Thirty-seven species are considered nomina dubia, mostly because they were described from immatures, three of them are illustrated: O. abnormis (Blackwall, 1866), O. affinis (Strand, 1906) comb. nov., O. africanus (Karsch, 1878), O. amanensis Strand, 1907a, O. annandalei (Simon, 1901), O. bivittatus Roewer, 1951, O. ceylonicus (Leardi, 1902), O. conspersipes (Thorell, 1899), Palystes derasus (C.L. Koch, 1845) comb. nov., O. detritus (C.L. Koch, 1845), O. digitalis Eydoux Souleyet, 1842, O. exterritorialis Strand, 1907b, O. flavovittatus (Caporiacco, 1935), O. fugax (O. Pickard-Cambridge, 1885), O. guineibius Strand, 1911c, O. guttipes (Simon, 1897a), O. kiranae Sethi Tikader, 1988, O. longespinus Caporiacco, 1947b, O. maculinotatus Strand, 1909, O. morbillosus (MacLeay, 1827), O. occidentalis (Karsch, 1879b), O. ornatus (Thorell, 1877), O. pagurus Walckenaer, 1837, O. patagiatus (Simon, 1897b), O. praecinctus (L. Koch, 1865), O. provocator Walckenaer, 1837, O. quesitio Moradmand, 2013, O. quinquelineatus Taczanowski, 1872, O. sexpunctatus Caporiacco, 1947a, Heteropoda similaris (Rainbow, 1898) comb. rev., O. socotranus (Pocock, 1903), O. striatus (Blackwall, 1867), O. timidus (O. Pickard-Cambridge, 1885), Remmius variatus (Thorell, 1899) comb. nov., O. vittifemur Strand, 1916b, O. wolfi Strand, 1911a and O. zebra (Thorell, 1881). Eighty-nine species are misplaced in Olios but cannot be affiliated to any of the known genera. They belong to the subfamilies Deleninae Hogg, 1903, Sparassinae Bertkau, 1872 and Palystinae Simon, 1897a, nineteen of them are illustrated: O. acostae Schenkel, 1953, O. actaeon (Pocock, 1898c), O. artemis Hogg, 1915, O. atomarius Simon, 1880, O. attractus Petrunkevitch, 1911, O. auranticus Mello-Leitão, 1918, O. benitensis (Pocock, 1900c), O. berlandi Roewer, 1951, O. biarmatus Lessert, 1925, O. canalae Berland, 1924, O. caprinus Mello-Leitão, 1918, O. chelifer Lawrence, 1937, O. chubbi Lessert, 1923, O. clarus (Keyserling, 1880), O. coccineiventris (Simon, 1880), O. corallinus Schmidt, 1971, O. crassus Banks, 1909, O. debilipes Mello-Leitão, 1945, O. discolorichelis Caporiacco, 1947a, O. erroneus O. Pickard-Cambridge, 1890, O. extensus Berland, 1924, O. fasciiventris Simon, 1880 , O. feldmanni Strand, 1915, O. fimbriatus Chrysanthus, 1965, O. flavens Nicolet, 1849, O. fonticola (Pocock, 1902), O. formosus Banks, 1929, O. francoisi (Simon, 1898a), O. fulvithorax Berland, 1924, O. galapagoensis Banks, 1902, O. gaujoni (Simon, 1897b) comb. nov., O. giganteus Keyserling, 1884, O. hoplites Caporiacco, 1941, O. humboldtianus Berland, 1924, O. insignifer Chrysanthus, 1965, O. insulanus (Thorell, 1881), O. keyserlingi (Simon, 1880), O. lacticolor Lawrence, 1952, O. lepidus Vellard, 1924, O. longipedatus Roewer, 1951, O. machadoi Lawrence, 1952, O. macroepigynus Soares, 1944, O. maculatus Blackwall, 1862, O. marshalli (Pocock, 1898a), O. mathani (Simon, 1880), O. minensis Mello-Leitão, 1917, O. monticola Berland, 1924, O. mutabilis Mello-Leitão, 1917, O. mygalinus Doleschall, 1857, O. mygalinus cinctipes Merian, 1911, O. mygalinus nirgripalpis Merian, 1911, O. neocaledonicus Berland, 1924, O. nigristernis (Simon, 1880), O. nigriventris Taczanowski, 1872, O. oberzelleri Kritscher, 1966, O. obscurus (Keyserling, 1880), O. obtusus F.O. Pickard-Cambridge, 1900, O. orchiticus Mello-Leitão, 1930, O. oubatchensis Berland, 1924, O. paraensis (Keyserling, 1880), O. pellucidus (Keyserling, 1880), O. peruvianus Roewer, 1951, O. pictitarsis Simon, 1880, O. plumipes Mello-Leitão, 1937, O. princeps Hogg, 1914, O. pulchripes (Thorell, 1899), O. puniceus (Simon, 1880), O. roeweri Caporiacco, 1955a, O. rubripes Taczanowski, 1872, O. rubriventris (Thorell, 1881), O. rufus Keyserling, 1880, O. sanctivincenti (Simon, 1898b), O. similis (O. Pickard-Cambridge, 1890), O. simoni (O. Pickard-Cambridge, 1890), O. skwarrae Roewer, 1933, O. spinipalpis (Pocock, 1901a), O. stictopus (Pocock, 1898a), O. strandi Kolosváry, 1934, O. subadultus Mello-Leitão, 1930, O. sulphuratus (Thorell, 1899), O. sylvaticus (Blackwall, 1862), O. tamerlani Roewer, 1951, O. tigrinus (Keyserling, 1880), O. trifurcatus (Pocock, 1900c), O. trinitatis Strand, 1916a, O. velox (Simon, 1880), O. ventrosus Nicolet, 1849, O. vitiosus Vellard, 1924 and O. yucatanus Chamberlin, 1925. Seventeen taxa are transferred from Olios to other genera within Sparassidae, eight of them are illustrated: Adcatomus luteus (Keyserling, 1880) comb. nov., Eusparassus flavidus (O. Pickard-Cambridge, 1885) comb. nov., Palystes derasus (C.L. Koch, 1845) comb. nov., Heteropoda similaris (Rainbow, 1898) comb. rev., Remmius variatus (Thorell, 1899) comb. nov., Nolavia audax (Banks, 1909) comb. nov., Nolavia antiguensis (Keyserling, 1880) comb. nov., Nolavia antiguensis columbiensis (Schmidt, 1971) comb. nov., Nolavia fuhrmanni (Strand, 1914) comb. nov., Nolavia helva (Keyserling, 1880) comb. nov., Nolavia stylifer (F.O. Pickard-Cambridge, 1900) comb. nov., Nolavia valenciae (Strand, 1916a) comb. nov., Nungara cayana (Taczanowski, 1872) comb. nov., Polybetes bombilius (F.O. Pickard-Cambridge, 1899) comb. nov., Polybetes fasciatus (Keyserling, 1880) comb. nov., Polybetes hyeroglyphicus (Mello-Leitão, 1918) comb. nov. and Prychia paalonga (Barrion Litsinger, 1995) comb. nov. One species is transferred from Olios to the family Clubionidae Wagner, 1887: Clubiona paenuliformis (Strand, 1916a) comb. nov.
    Matched MeSH terms: Spiders*
  8. Sankaran PM, Caleb JTD, Sebastian PA
    Zootaxa, 2020 Jul 01;4808(1):zootaxa.4808.1.12.
    PMID: 33055998 DOI: 10.11646/zootaxa.4808.1.12
    The spider genus Glenognatha Simon, 1887 (Tetragnathidae) currently has 34 nominal species distributed in Afrotropical region, Indo-Malaya, Nearctic, Neotropics, Oceania and Palearctic regions (Cabra-García Brescovit 2016; World Spider Catalog 2020). It has one representative in India: Glenognatha dentata (Zhu Wen, 1978) (World Spider Catalog 2020). The genus Pachygnatha Sundevall, 1823 currently comprises 46 nominal species distributed in Africa, Holarctic, South and South-East Asia (World Spider Catalog 2020). Biswas and Roy (2004) recorded this genus in India, while they described Pachygnatha silentvalliensis Biswas Roy, 2004. The species is known from its original verbal description only since the genitalic illustrations were apparently not published along with the description (Biswas Roy 2004), thus leaving its identity obscured. To redescribe and illustrate this species, we examined its type material and found that Biswas and Roy (2004) had misidentified the species and in fact it belongs to Tylorida Simon, 1894. In this paper, we describe a new Glenognatha species from the southern Western Ghats of India, transfer Dyschiriognatha ganeshi Bodkhe, Manthen Tanikawa, 2014 to Glenognatha and synonymise P. silentvalliensis with Tylorida marmorea (Pocock, 1901).
    Matched MeSH terms: Spiders*
  9. Lan T, Yao Z, Zheng G, Wongprom P, Li S
    Zootaxa, 2020 May 14;4778(2):zootaxa.4778.2.4.
    PMID: 33055822 DOI: 10.11646/zootaxa.4778.2.4
    The genus Savarna Huber, 2005 comprises only five species, from southern Thailand, Peninsular Malaysia and Sumatra. In this study, five new species are described from Thailand: Savarna bannang sp. nov. (Yala), S. chiangmai sp. nov. (Chiangmai), S. huahin sp. nov. (Prachuap Kiri Khan), S. satun sp. nov. (Satun), S. thungsong sp. nov. (Nakhon Srithammarat). All new species are described from males and females. The distribution of S. chiangmai sp. nov. represent the northernmost record of the genus.
    Matched MeSH terms: Spiders*
  10. Chang WJ, Yao Z, Li S
    Zookeys, 2020;961:41-118.
    PMID: 32904093 DOI: 10.3897/zookeys.961.53058
    Previously, the genus Merizocera Fage, 1912 comprised only seven species from Indonesia, Malaysia, Sri Lanka, and Thailand. In this study, 28 new species are described from South and Southeast Asia: M. baoshan Li, sp. nov. (♂♀), M. betong Li, sp. nov. (♂♀), M. colombo Li, sp. nov. (♂♀), M. galle Li, sp. nov. (♂♀), M. hponkanrazi Li, sp. nov. (♂), M. kachin Li, sp. nov. (♂♀), M. kandy Li, sp. nov. (♂♀), M. mandai Li, sp. nov. (♂♀), M. krabi Li, sp. nov. (♂♀), M. kurunegala Li, sp. nov. (♂♀), M. lincang Li, sp. nov. (♀), M. mainling Li, sp. nov. (♂♀), M. nyingchi Li, sp. nov. (♀), M. peraderiya Li, sp. nov. (♂♀), M. phuket Li, sp. nov. (♂♀), M. putao Li, sp. nov. (♂♀), M. ranong Li, sp. nov. (♂♀), M. ratnapura Li, sp. nov. (♂♀), M. salawa Li, sp. nov. (♂), M. tak Li, sp. nov. (♀), M. tanintharyi Li, sp. nov. (♂♀), M. tengchong Li, sp. nov. (♂), M. thenna Li, sp. nov. (♂♀), M. uva Li, sp. nov. (♀), M. wenshan Li, sp. nov. (♂♀), M. wui Li, sp. nov. (♂♀), M. yala Li, sp. nov. (♀), and M. yuxi Li, sp. nov. (♂♀). Among them the genus Merizocera is reported for the first time from China, Myanmar, and Singapore.
    Matched MeSH terms: Spiders
  11. Li Y, Lin Y, Li S
    Zookeys, 2020;988:63-128.
    PMID: 33223891 DOI: 10.3897/zookeys.988.56188
    Crassignatha Wunderlich, 1995 is redefined to include species with six eyes in three diads, chelicerae fused only near the base, sculpturing on the carapace, one or two clasping spurs on tibia II, a bilateral scutum of the male abdomen, and globular spermathecae and adjacent copulatory openings in the female. A key and distribution map are provided for 24 Crassignatha species in this paper. Diagnoses and illustrated photographs are provided for 22 species from China, Malaysia, Thailand, and Vietnam. Thirteen species are described and documented as new to science: C. baihua Y. Lin & S. Li, sp. nov. (♂♀), C. bangbie Y. Lin & S. Li, sp. nov. (♀), C. changyan Y. Lin & S. Li, sp. nov. (♀), C. dongnai Y. Lin & S. Li, sp. nov. (♀), C. gucheng Y. Lin & S. Li, sp. nov. (♂♀), C. mengla Y. Lin & S. Li, sp. nov. (♂♀), C. nantou Y. Lin & S. Li, sp. nov. (♂♀), C. nasalis Y. Lin & S. Li, sp. nov. (♂♀), C. rostriformis Y. Lin & S. Li, sp. nov. (♂♀), C. shunani Y. Lin & S. Li, sp. nov. (♂♀), C. si Y. Lin & S. Li, sp. nov. (♂♀), C. thamphra Y. Lin & S. Li, sp. nov. (♀), and C. xichou Y. Lin & S. Li, sp. nov. (♀). Three new combinations are proposed: C. bicorniventris (Lin & Li, 2009), comb. nov., C. quadriventris (Lin & Li, 2009), comb. nov., and C. shiluensis (Lin & Li, 2009), comb. nov. are transferred from Patu Marples, 1951. DNA barcodes and genetic distances of seventeen species are obtained to confirm correct identification. Types of seven known Chinese Crassignatha species are re-examined, and the taxonomic placement of C. longtou Miller, Griswold & Yin, 2009 may be incorrect based on morphological and molecular data.
    Matched MeSH terms: Spiders
  12. Kodada J, Jäch MA, Freitag H, Čiamporová-Zaťovičová Z, Goffová K, Selnekovič D, et al.
    Zookeys, 2020;1003:31-55.
    PMID: 33384561 DOI: 10.3897/zookeys.1003.55541
    Ancyronyx lianlabangorumsp. nov. (Coleoptera, Elmidae), a new spider riffle beetle from the Kelabit Highlands (Sarawak, northern Borneo), is described. Illustrations of the habitus and diagnostic characters of the new species and the similar, polymorphic A. pulcherrimus Kodada et al. are presented. Differences to closely related species, based on COI nucleotide sequences and morphological characters, are discussed. Ancyronyx pulcherrimus is here recorded from Sarawak for the first time, based on DNA barcoding.
    Matched MeSH terms: Spiders
  13. Kodada J, Jäch MA, Freitag H, Čiamporová-Zaťovičová Z, Goffová K, Selnekovič D, et al.
    Zookeys, 2020;912:25-64.
    PMID: 32123499 DOI: 10.3897/zookeys.912.47796
    Ancyronyx clisterisp. nov. (Coleoptera, Elmidae) a new spider riffle beetle discovered from northern Borneo (Brunei; Sabah and Sarawak, Malaysia) and the larva of Ancyronyx sarawacensis Jäch are described. Illustrations of the habitus and diagnostic characters of the new species and the similar and highly variable A. sarawacensis are presented. Differences to closely related species, based on DNA barcodes and morphological characters, are discussed. Association of the larva and the imago of A. sarawacensis, and the occurrence of Ancyronyx procerus Jäch in Peninsular Malaysia and Sabah are confirmed by using COI mtDNA sequences.
    Matched MeSH terms: Spiders
  14. Chang WJ, Li S
    Zookeys, 2020;913:1-87.
    PMID: 32132849 DOI: 10.3897/zookeys.913.48650
    Thirty-one new species of the genus Leclercera Deeleman-Reinhold, 1995 from China, Indonesia, Malaysia, Myanmar, Nepal, and Thailand are described: L. mianqiusp. nov. (♂♀), L. thamsangensissp. nov. (♂♀), L. yandousp. nov. (♂♀), L. thamkaewensissp. nov. (♂♀), L. xiangbabangsp. nov. (♂♀), L. jianzuiyusp. nov. (♂♀), L. yamaensissp. nov. (♂♀), L. banensissp. nov. (♂♀), L. dumuzhousp. nov. (♀), L. suwanensissp. nov. (♂♀), L. maochongsp. nov. (♀), L. shanzisp. nov. (♀), L. duandaisp. nov. (♂♀), L. hponensissp. nov. (♂♀), L. lizisp. nov. (♂), L. xiaodaisp. nov. (♀), L. yanjingsp. nov. (♀), L. ekteenensissp. nov. (♂), L. zhamensissp. nov. (♂), L. sanjiaosp. nov. (♀), L. selasihensissp. nov. (♂♀), L. paiensissp. nov. (♀), L. yuanzhuisp. nov. (♀), L. zanggaensissp. nov. (♀), L. aniensissp. nov. (♂♀), L. renqinensissp. nov. (♂♀), L. shergylaensissp. nov. (♂♀), L. pulongensissp. nov. (♂), L. tudaosp. nov. (♂♀), L. duibaensissp. nov. (♂), and L. jiazhongensissp. nov. (♂♀). Types are deposited in the Institute of Zoology, Chinese Academy of Sciences (IZCAS) in Beijing.
    Matched MeSH terms: Spiders
  15. Wang LY, Zhang ZS, Peng XJ
    Zootaxa, 2019 Aug 19;4657(2):zootaxa.4657.2.12.
    PMID: 31716793 DOI: 10.11646/zootaxa.4657.2.12
    The wolf spider genus Artoria Thorell, 1877 is a common group in Australasia, currently including 41 species from Australia, three from New Zealand and four from Pacific islands (Framenau Baehr 2018; Word Spider Catalog 2019). This does not, however, comprise the whole distribution of the genus. The type species, A. parvula Thorell, 1877 has been recorded from China, Philippines, Indonesia (Sulawesi) and Australia (Northern Territory). An endemic species, A. ligulacea (Qu, Peng Yin, 2009) was described from Yunnan, China. This indicates that there must be some undescribed species from Southeast Asian countries. A recent collecting expedition to Malaysia confirms this hypothesis. Two species of Artoria were found, the type species, A. parvula from East and West Malaysia and a new species, A. weiwei sp. nov. from East Malaysia. In this study, we illustrate the former and describe for the first time the latter species.
    Matched MeSH terms: Spiders*
  16. Zhang BS, Zhang F
    Zootaxa, 2019 Mar 20;4568(2):zootaxa.4568.2.2.
    PMID: 31715856 DOI: 10.11646/zootaxa.4568.2.2
    Four new species of the genus Mallinella Strand, 1906, from the natural forests of Malaysia, are described as Mallinella bicanaliculata sp. n. (♂♀), M. calautica sp. n. (♂♀), M. laxa sp. n. (♂♀), and M. obliqua sp. n. (♂♀). The four new species belong to four species groups and were collected from the forest litter in Sabah state by sieving.
    Matched MeSH terms: Spiders*
  17. Law YH
    Science, 2019 03 01;363(6430):914-915.
    PMID: 30819943 DOI: 10.1126/science.363.6430.914
    Matched MeSH terms: Spiders*
  18. Jäger P
    Zootaxa, 2019 Feb 26;4560(3):zootaxa.4560.3.2.
    PMID: 31716566 DOI: 10.11646/zootaxa.4560.3.2
    The genus Rhitymna Simon, 1897 is revised by means of new material. Four new species are described: R. gerdmangel spec. nov. (Thailand, Malaysia; male, female), R. merianae spec. nov. (Indonesia: Bali; male), R. flores spec. nov. (Indonesia: Flores; male, female), R. senckenbergi spec. nov. (Philippines; male). The male of R. plana Jäger, 2003 and the female of R. tangi Quan Liu, 2012 are described for the first time. Rhitymna simoni Jäger, 2003 is recognised as junior synonym of R. cursor (Thorell, 1894) comb. nov., the latter transferred from the genus Olios Walckenaer, 1837. New records are given for further Rhitymna species, among them new country or island records for R. verruca (Wang, 1991) (Thailand), R. tangi Quan Liu, 2012 (Laos), R. plana Jäger, 2003 (Cambodia), R. pinangensis (Thorell, 1891) (Thailand), R. deelemanae Jäger, 2003 (Bali). The number of cheliceral bristles close to the fang base is recognised as size dependent, therefore without true phylogenetic signal. Two main types of copulatory organs within the genus are recognised and discussed. R. gerdmangel spec. nov. has a special biology as it lives exclusively in bamboo. Holes made by beetles or woodpeckers are used to enter the bamboo stem. Spiders hide during the day and lay their eggs in bamboo internodes.
    Matched MeSH terms: Spiders*
  19. Mohamad Izzuan Mohd ishar, Moh Khata Jabor
    MyJurnal
    Kemajuan negara dan perkembangan bangsa adalah berdasarkan sistem pendidikan yang diamalkan. Pendidikan yang baik dapat melahirkan generasi yang bertanggungjawab dan menghargai kehidupan. Hal ini telah mencetuskan Wawasan Pendidikan Negara yang merupakan inti pati kepada Wawasan 2020. Usaha menyemai nilai murni dan perubahan pendidikan dalam kalangan pelajar kini turut terletak di bahu guru. Sifat kepimpinan yang terdapat pada guru amat penting dalam pembentukan wawasan pendidikan terutama gaya kepimpinan yang digunakan terhadap pelajar. Berdasarkan hala tuju yang telah digariskan, guru perlu menggunakan gaya kepimpinan yang diamalkan secara menyeluruh bagi memastikan segala aktiviti atau strategi yang dirancang mengikut hala tuju tersebut. Peranan seorang guru dalam membentuk wawasan ini juga membantu memberi kefahaman kepada guru dalam segala tindak tanduk yang perlu dilakukannya bagi mencapai Wawasan Pendidikan Negara
    Matched MeSH terms: Spiders
  20. M. Kaviza
    MyJurnal
    Kajian eksperimental ini bertujuan untuk mengenal pasti kesan teknik Peer Instruction dengan analisis sumber-sumber sejarah terhadap kekekalan kemahiran berfikir kritikal. Seramai 25 orang murid Tingkatan Empat melalui teknik persampelan bertujuan terlibat dalam kajian ini. Instrumen ujian pemikiran kritikal yang diadaptasi yang telah disahkan pakar penilai dan mempunyai nilai kebolehpercayaan yang baik merupakan instrumen kajian ini. Data kajian ini dianalisis secara inferensi iaitu ujian ANOVA Satu Hala dengan pengukuran berulang melalui perisian IBM SPSS. Dapatan kajian ini menunjukkan bahawa teknik Peer Instruction dengan analisis sumber-sumber sejarah adalah berkesan terhadap kekekalan kemahiran berfikir kritikal dalam kalangan murid. Implikasi kajian ini telah mencadangkan kepada guru-guru Sejarah pada semua peringkat persekolahan untuk melaksanakan teknik Peer Instruction dengan analisis sumber-sumber sejarah untuk memupuk kemahiran berfikir kritikal yang beterusan dalam kalangan murid.
    Matched MeSH terms: Spiders
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links