Displaying publications 1 - 20 of 107 in total

Abstract:
Sort:
  1. Matinmanesh A, Li Y, Nouhi A, Zalzal P, Schemitsch EH, Towler MR, et al.
    J Mech Behav Biomed Mater, 2018 02;78:273-281.
    PMID: 29190533 DOI: 10.1016/j.jmbbm.2017.11.015
    It has been reported that the adhesion of bioactive glass coatings to Ti6Al4V reduces after degradation, however, this effect has not been quantified. This paper uses bilayer double cantilever (DCB) specimens to determine GIC and GIIC, the critical mode I and mode II strain energy release rates, respectively, of bioactive coating/Ti6Al4V substrate systems degraded to different extents. Three borate-based bioactive glass coatings with increasing amounts of incorporated SrO (0, 15 and 25mol%) were enamelled onto Ti6Al4V substrates and then immersed in de-ionized water for 2, 6 and 24h. The weight loss of each glass composition was measured and it was found that the dissolution rate significantly decreased with increasing SrO content. The extent of dissolution was consistent with the hypothesis that the compressive residual stress tends to reduce the dissolution rate of bioactive glasses. After drying, the bilayer DCB specimens were created and subjected to nearly mode I and mode II fracture tests. The toughest coating/substrate system (one composed of the glass containing 25mol% SrO) lost 80% and 85% of its GIC and GIIC, respectively, in less than 24h of degradation. The drop in GIC and GIIC occurred even more rapidly for other coating/substrate systems. Therefore, degradation of borate bioactive glass coatings is inversely related to their fracture toughness when coated onto Ti6A4V substrates. Finally, roughening the substrate was found to be inconsequential in increasing the toughness of the system as the fracture toughness was limited by the cohesive toughness of the glass itself.
    Matched MeSH terms: Titanium/chemistry*
  2. Ong WJ, Tan LL, Chai SP, Yong ST, Mohamed AR
    Nanoscale, 2014 Feb 21;6(4):1946-2008.
    PMID: 24384624 DOI: 10.1039/c3nr04655a
    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are thoroughly examined, with additional insights related to the charge transfer events for each strategy of the modified-TiO2 composites. Finally, we offer a summary and some invigorating perspectives on the major challenges and new research directions for future exploitation in this emerging frontier, which we hope will advance us to rationally harness the outstanding structural and electronic properties of {001} facets for various environmental and energy-related applications.
    Matched MeSH terms: Titanium/chemistry*
  3. Mohamed MA, W Salleh WN, Jaafar J, Mohd Hir ZA, Rosmi MS, Abd Mutalib M, et al.
    Carbohydr Polym, 2016 08 01;146:166-73.
    PMID: 27112862 DOI: 10.1016/j.carbpol.2016.03.050
    Visible light driven C-doped mesoporous TiO2 (C-MTiO2) nanorods have been successfully synthesized through green, low cost, and facile approach by sol-gel bio-templating method using regenerated cellulose membrane (RCM) as nanoreactor. In this study, RCM was also responsible to provide in-situ carbon sources for resultant C-MTiO2 nanorods in acidified sol at low temperatures. The composition, crystallinity, surface area, morphological structure, and optical properties of C-MTiO2 nanorods, respectively, had been characterized using FTIR, XRD, N2 adsorption/desorption, TEM, UV-vis-NIR, and XPS spectroscopy. The results suggested that the growth of C-MTiO2 nanorods was promoted by the strong interaction between the hydroxyl groups of RCMs and titanium ion. Optical and XPS analysis confirmed that carbon presence in TiO2 nanorods were responsible for band-gap narrowing, which improved the visible light absorption capability. Photocatalytic activity measurements exhibited the capability of C-MTiO2 nanorods in degradation of methyl orange in aqueous solution, with 96.6% degradation percentage under visible light irradiation.
    Matched MeSH terms: Titanium/chemistry*
  4. Bagheri S, Muhd Julkapli N, Bee Abd Hamid S
    ScientificWorldJournal, 2014;2014:727496.
    PMID: 25383380 DOI: 10.1155/2014/727496
    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications.
    Matched MeSH terms: Titanium/chemistry*
  5. Mahmoodian R, Hamdi M, Hassan MA, Akbari A
    PLoS One, 2015;10(6):e0130836.
    PMID: 26111217 DOI: 10.1371/journal.pone.0130836
    Titanium carbide-graphite (TiC/C) composite was successfully synthesized from Ti and C starting elemental powders using self-propagating high-temperature synthesis technique in an ultra-high plasma inert medium in a single stage. The TiC was exposed to a high-temperature inert medium to allow recrystallization. The product was then characterized using field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Rietveld refinement, nanoindentation, and micro-hardness to determine the product's properties. The recorded micro-hardness of the product was 3660 HV, which is a 14% enhancement and makes is comparable to TiC materials.
    Matched MeSH terms: Titanium/chemistry*
  6. Ataollahi Oshkour A, Pramanik S, Shirazi SF, Mehrali M, Yau YH, Abu Osman NA
    ScientificWorldJournal, 2014;2014:616804.
    PMID: 25538954 DOI: 10.1155/2014/616804
    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.
    Matched MeSH terms: Titanium/chemistry*
  7. Ramli ZA, Asim N, Isahak WN, Emdadi Z, Ahmad-Ludin N, Yarmo MA, et al.
    ScientificWorldJournal, 2014;2014:415136.
    PMID: 25013855 DOI: 10.1155/2014/415136
    This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m(2) g(-1)). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.
    Matched MeSH terms: Titanium/chemistry*
  8. Riaz N, Bustam MA, Chong FK, Man ZB, Khan MS, Shariff AM
    ScientificWorldJournal, 2014;2014:342020.
    PMID: 25105158 DOI: 10.1155/2014/342020
    Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI) method with TiO2 (Degussa-P25) as support and calcined at different temperatures (180, 200, and 300°C) for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR) and temperature programmed reduction (TPR). The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD) removal (86.82%). According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion.
    Matched MeSH terms: Titanium/chemistry*
  9. Ong WJ, Tan LL, Chai SP, Yong ST, Mohamed AR
    ChemSusChem, 2014 Mar;7(3):690-719.
    PMID: 24532412 DOI: 10.1002/cssc.201300924
    Titanium dioxide (TiO2 ) is one of the most widely investigated metal oxides because of its extraordinary surface, electronic, and photocatalytic properties. However, the large band gap of TiO2 and the considerable recombination of photogenerated electron-hole pairs limit its photocatalytic efficiency. Therefore, research attention is being increasingly directed towards engineering the surface structure of TiO2 on the atomic level (namely morphological control of {001} facets on the micro- and nanoscale) to fine-tune its physicochemical properties; this could ultimately lead to the optimization of selectivity and reactivity. This Review encompasses the fundamental principles to enhance the photocatalytic activity by using highly reactive {001}-faceted TiO2 -based composites. The current progress of such composites, with particular emphasis on the photodegradation of pollutants and photocatalytic water splitting for hydrogen generation, is also discussed. The progresses made are thoroughly examined for achieving remarkable photocatalytic performances, with additional insights with regard to charge transfer. Finally, a summary and some perspectives on the challenges and new research directions for future exploitation in this emerging frontier are provided, which hopefully would allow for harnessing the outstanding structural and electronic properties of {001} facets for various energy- and environmental-related applications.
    Matched MeSH terms: Titanium/chemistry*
  10. Tan LL, Chai SP, Mohamed AR
    ChemSusChem, 2012 Oct;5(10):1868-82.
    PMID: 22987439 DOI: 10.1002/cssc.201200480
    Graphene is one of the most promising materials in the field of nanotechnology and has attracted a tremendous amount of research interest in recent years. Due to its large specific surface area, high thermal conductivity, and superior electron mobility, graphene is regarded as an extremely attractive component for the preparation of composite materials. At the same time, the use of photocatalysts, particularly TiO(2), has also been widely studied for their potential in addressing various energy and environmental-related issues. However, bare TiO(2) suffers from low efficiency and a narrow light-response range. Therefore, the combination of graphene and TiO(2) is currently one of the most active interdisciplinary research areas and demonstrations of photocatalytic enhancement are abundant. This Review presents and discusses the current development of graphene-based TiO(2) photocatalysts. The theoretical framework of the composite, the synthetic strategies for the preparation and modification of graphene-based TiO(2) photocatalysts, and applications of the composite are reviewed, with particular attention on the photodegradation of pollutants and photocatalytic water splitting for hydrogen generation.
    Matched MeSH terms: Titanium/chemistry*
  11. Abd Aziz A, Yong KS, Ibrahim S, Pichiah S
    J Hazard Mater, 2012 Jan 15;199-200:143-50.
    PMID: 22100220 DOI: 10.1016/j.jhazmat.2011.10.069
    An enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET surface area analysis, vibrating sample magnetometer (VSM), X-ray photon spectroscopy (XPS) and visible light spectroscopy analysis for their respective properties. The XRD and EDS revealed the structural and inorganic composition of N-TiO(2) supported on SrFe(12)O(19). The supported N-TiO(2) exhibited a strong ferromagnetic property with tremendous stability against magnetic property losses. It also resulted in reduced band gap (2.8 eV) and better visible light absorption between 400 and 800 nm compared to N-doped TiO(2). The photocatalytic activity was investigated with a recalcitrant phenolic compound namely 2,4-dichlorophenol (2,4-DCP) as a model pollutant under direct bright and diffuse sunlight exposure. A complete degradation of 2,4-DCP was achieved with an initial concentration of 50mg/L for both photocatalysts in 180 min and 270 min respectively under bright sunlight. Similarly the diffuse sunlight study resulted in complete degradation for supported N-TiO(2) and >85% degradation N-TiO(2), respectively. Finally the supported photocatalyst was separated under permanent magnetic field with a mass recovery ≈ 98% for further reuse.
    Matched MeSH terms: Titanium/chemistry*
  12. Ghazali MS, Zakaria A, Rizwan Z, Kamari HM, Hashim M, Zaid MH, et al.
    Int J Mol Sci, 2011;12(3):1496-504.
    PMID: 21673903 DOI: 10.3390/ijms12031496
    The optical band-gap energy (E(g)) is an important feature of semiconductors which determines their applications in optoelectronics. Therefore, it is necessary to investigate the electronic states of ceramic ZnO and the effect of doped impurities under different processing conditions. E(g) of the ceramic ZnO + xBi(2)O(3) + xTiO(2), where x = 0.5 mol%, was determined using a UV-Vis spectrophotometer attached to a Reflectance Spectroscopy Accessory for powdered samples. The samples was prepared using the solid-state route and sintered at temperatures from 1140 to 1260 °C for 45 and 90 minutes. E(g) was observed to decrease with an increase of sintering temperature. XRD analysis indicated hexagonal ZnO and few small peaks of intergranular layers of secondary phases. The relative density of the sintered ceramics decreased and the average grain size increased with the increase of sintering temperature.
    Matched MeSH terms: Titanium/chemistry*
  13. Wong CL, Tan YN, Mohamed AR
    J Environ Manage, 2011 Jul;92(7):1669-80.
    PMID: 21450395 DOI: 10.1016/j.jenvman.2011.03.006
    Titania nanotubes are gaining prominence in photocatalysis, owing to their excellent physical and chemical properties such as high surface area, excellent photocatalytic activity, and widespread availability. They are easily produced by a simple and effective hydrothermal method under mild temperature and pressure conditions. This paper reviews and analyzes the mechanism of titania nanotube formation by hydrothermal treatment. It further examines the parameters that affect the formation of titania nanotubes, such as starting material, sonication pretreatment, hydrothermal temperature, washing process, and calcination process. Finally, the effects of the presence of dopants on the formation of titania nanotubes are analyzed.
    Matched MeSH terms: Titanium/chemistry*
  14. Foo KY, Hameed BH
    Adv Colloid Interface Sci, 2010 Sep 15;159(2):130-43.
    PMID: 20673570 DOI: 10.1016/j.cis.2010.06.002
    Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation.
    Matched MeSH terms: Titanium/chemistry*
  15. Zainudin NF, Abdullah AZ, Mohamed AR
    J Hazard Mater, 2010 Feb 15;174(1-3):299-306.
    PMID: 19818556 DOI: 10.1016/j.jhazmat.2009.09.051
    Photocatalytic degradation of phenol was investigated using the supported nano-TiO(2)/ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO(2) as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO(2):ZSM-5:silica gel:colloidal silica gel=1:0.6:0.6:1) which giving about 90% degradation of 50mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m(2)/g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.
    Matched MeSH terms: Titanium/chemistry*
  16. Akpan UG, Hameed BH
    J Hazard Mater, 2009 Oct 30;170(2-3):520-9.
    PMID: 19505759 DOI: 10.1016/j.jhazmat.2009.05.039
    This paper presents the review of the effects of operating parameters on the photocatalytic degradation of textile dyes using TiO2-based photocatalysts. It further examines various methods used in the preparations of the considered photocatalysts. The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters. It was also found out that sol-gel method is widely used in the production of TiO2-based photocatalysts because of the advantage derived from its ability to synthesize nanosized crystallized powder of the photocatalysts of high purity at relatively low temperature.
    Matched MeSH terms: Titanium/chemistry*
  17. Maleki-Ghaleh H, Hafezi M, Hadipour M, Nadernezhad A, Aghaie E, Behnamian Y, et al.
    PLoS One, 2015;10(9):e0138454.
    PMID: 26383641 DOI: 10.1371/journal.pone.0138454
    In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints.
    Matched MeSH terms: Titanium/chemistry*
  18. Choudhury D, Lackner JM, Major L, Morita T, Sawae Y, Bin Mamat A, et al.
    J Mech Behav Biomed Mater, 2016 06;59:586-595.
    PMID: 27085502 DOI: 10.1016/j.jmbbm.2016.04.004
    This study investigates the durability of functional diamond-like carbon (DLC) coated titanium alloy (Ti-6Al-4V) under edge loading conditions for application in artificial hip joints. The multilayered (ML) functional DLC coatings consist of three key layers, each of these layers were designed for specific functions such as increasing fracture strength, adapting stress generation and enhancing wear resistance. A 'ball-on-disk' multi-directional wear tester was used in the durability test. Prior to the wear testing, surface hardness, modulus elasticity and Raman intensity were measured. The results revealed a significant wear reduction to the DLC coated Ti-6Al-4V disks compared to that of non-coated Ti-6Al-4V disks. Remarkably, the counterpart Silicon Nitride (Si3N4) balls also yielded lowered specific wear rate while rubbed against the coated disks. Hence, the pairing of a functional multilayered DLC and Si3N4 could be a potential candidate to orthopedics implants, which would perform a longer life-cycle against wear caused by edge loading.
    Matched MeSH terms: Titanium/chemistry*
  19. Ghadiry M, Gholami M, Lai CK, Ahmad H, Chong WY
    PLoS One, 2016;11(4):e0153949.
    PMID: 27101247 DOI: 10.1371/journal.pone.0153949
    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.
    Matched MeSH terms: Titanium/chemistry*
  20. Rad S, Shamsudin S, Taha MR, Shahid S
    Water Sci Technol, 2016;73(2):405-13.
    PMID: 26819397 DOI: 10.2166/wst.2015.465
    The photo-degradation of nutrients in stormwater in photocatalytic reactor wet detention pond using nano titanium dioxide (TiO2) in concrete was investigated in a scale model as a new stormwater treatment method. Degradation of phosphate and nitrate in the presence of nano-TiO2 under natural ultra violet (UV) from tropical sunlight was monitored for 3 weeks compared with normal ponds. Two types of cement, including ordinary Portland and white cement mixed with TiO2 nano powder, were used as a thin cover to surround the body of the pond. Experiments with and without the catalyst were carried out for comparison and control. Average Anatase diameter of 25 nm and Rutile 100 nm nano particles were applied at three different mixtures of 3, 10 and 30% weight. The amounts of algae available orthophosphate and nitrate, which cause eutrophication in the ponds, were measured during the tests. Results revealed that the utilization of 3% up to 30% weight nano-TiO2 can improve stormwater outflow quality by up to 25% after 48 h and 57% after 3 weeks compared with the control sample in normal conditions with average nutrient (phosphate and nitrate) removal of 4% after 48 h and 10% after 3 weeks.
    Matched MeSH terms: Titanium/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links