Displaying all 14 publications

Abstract:
Sort:
  1. Azemi NFH, Misnan R, Keong BP, Mokhtar M, Kamaruddin N, Fah WC, et al.
    Mol Biol Rep, 2021 Oct;48(10):6709-6718.
    PMID: 34427887 DOI: 10.1007/s11033-021-06661-x
    BACKGROUND: Tropomyosin is a major allergen in crustaceans, including mud crab species, but its molecular and allergenic properties in Scylla olivacea are not well known. Thus, this study aimed to produce the recombinant tropomyosin protein from S. olivacea and subsequently investigate its IgE reactivity.

    METHODS AND RESULTS: The tropomyosin gene was cloned and expressed in the Escherichia coli system, followed by SDS-PAGE and immunoblotting test to identify the allergenic potential of the recombinant protein. The 855-base pair of tropomyosin gene produced was found to be 99.18% homologous to Scylla serrata. Its 284 amino acids matched the tropomyosin of crustaceans, arachnids, insects, and Klebsiella pneumoniae, ranging from 79.03 to 95.77%. The tropomyosin contained 89.44% alpha-helix folding with a tertiary structure of two-chain alpha-helical coiled-coil structures comprising a homodimer heptad chain. IPTG-induced histidine tagged-recombinant tropomyosin was purified at the size of 42 kDa and confirmed as tropomyosin using anti-tropomyosin monoclonal antibodies. The IgE binding of recombinant tropomyosin protein was reactive in 90.9% (20/22) of the sera from crab-allergic patients.

    CONCLUSIONS: This study has successfully produced an allergenic recombinant tropomyosin from S. olivacea. This recombinant tropomyosin may be used as a specific allergen for the diagnosis of allergy.

    Matched MeSH terms: Tropomyosin/genetics*; Tropomyosin/immunology*; Tropomyosin/chemistry
  2. Lai PS, Usama SM, Kiew LV, Lee HB, Chung LY, Burgess K, et al.
    Cancer Immunol Immunother, 2022 Sep;71(9):2099-2108.
    PMID: 35032175 DOI: 10.1007/s00262-022-03147-y
    Conventional cancer therapies such as chemotherapy are non-selective and induce immune system anergy, which lead to serious side effects and tumor relapse. It is a challenge to prime the body's immune system in the cancer-bearing subject to produce cancer antigen-targeting antibodies, as most tumor-associated antigens are expressed abundantly in cancer cells and some of normal cells. This study illustrates how hapten-based pre-immunization (for anti-hapten antibodies production) combined with cancer receptor labeling with hapten antigen constructs can elicit antibody-dependent cellular phagocytosis (ADCP). Thus, the hapten antigen 2,4-dinitrophenol (DNP) was covalently combined with a cancer receptor-binding dipeptide (IYIY) to form a dipeptide-hapten construct (IYIY-DNP, MW = 1322.33) that targets the tropomyosin receptor kinase C (TrkC)-expressed on the surface of metastatic cancer cells. IYIY-DNP facilitated selective association of RAW264.7 macrophages to the TrkC expressing 4T1 cancer cells in vitro, forming cell aggregates in the presence of anti-DNP antibodies, suggesting initiation of anti-DNP antibody-dependent cancer cell recognition of macrophages by the IYIY-DNP. In in vivo, IYIY-DNP at 10 mg/kg suppressed growth of 4T1 tumors in DNP-immunized BALB/c mice by 45% (p 
    Matched MeSH terms: Tropomyosin*
  3. Yadzir ZH, Misnan R, Murad S
    PMID: 23082569
    IgE-mediated allergic reaction to squid is one of the most frequent molluscan shellfish allergies. Previously, we have detected a 36 kDa protein as the major allergen of Loligo edulis (white squid) by immunoblotting using sera from patients with squid allergy. The aim of this present study was to further identify this major allergen using a proteomics approach. The major allergen was identified by a combination of two-dimensional electrophoresis (2-DE), immunoblotting, mass spectrometry and bioinformatics tools. The 2-DE gel fractionated the cooked white squid proteins to more than 50 different protein spots between 10 to 38 kDa and isoelectric point (pI) from 3.0 to 10.0. A highly reactive protein spot of a molecular mass of 36 kDa and pI of 4.55 was observed in all of the patients' serum samples tested. Mass spectrometry analysis led to identification of this allergen as tropomyosin. This finding can contribute to advancement in component-based diagnosis, management of squid allergic patients, to the development of immunotherapy and to the standardization of allergenic test products as tools in molecular allergology.
    Matched MeSH terms: Tropomyosin/immunology*
  4. Misnan R, Kamarazaman NA, Sockalingam K, Yadzir ZHM, Bakhtiar F, Abdullah N, et al.
    J Sci Food Agric, 2023 Sep;103(12):5819-5830.
    PMID: 37092326 DOI: 10.1002/jsfa.12659
    BACKGROUND: Snail allergy is rare but can be fatal. Pila polita, a freshwater snail, was considered as a popular exotic food, particularly in tropical countries, and consumed in processed forms. Thus, the purpose of this study was to identify the major and cross-reactive allergens of P. polita and to determine the impact of food processing on the allergen stability.

    RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis fractionated raw snail extract to approximately 24 protein bands, between 9 and 245 kDa. The prominent band at 33 kDa was detected in all raw and processed snail extracts. Immunoblotting tests of the raw extract demonstrated 19 immunoglobulin E (IgE)-binding proteins, and four of them, at 30, 35, 42 and 49 kDa, were revealed as the major IgE-binding proteins of P. polita. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified the 49 and 42 kDa major allergens as actin, whereas the 30 and 35 kDa major allergens were identified as tropomyosin. Immunoblotting revealed that the raw snail had more allergenic proteins than the processed snail. The degree of allergenicity in decreasing order was raw > brine pickled> boiled > roasted > fried > vinegar pickled. The presence of cross-reactivity between P. polita and the shellfish tested was exhibited with either no, complete, or partial inhibitions.

    CONCLUSION: Actin and tropomyosin were identified as the major and cross-reactive allergens of P. polita among local patients with snail allergy. Those major allergens are highly stable to high temperatures, acidic pH, and high salt, which might played a crucial role in snail allergy in Malaysia. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Tropomyosin/chemistry
  5. Misnan R, Murad S, Yadzir ZH, Abdullah N
    Asian Pac J Allergy Immunol, 2012 Dec;30(4):285-93.
    PMID: 23393908
    Tropomyosin and arginine kinase have been identified as the major allergens in multiple species of crab. Charybdis feriatus is an important commercial crab in this country.
    Matched MeSH terms: Tropomyosin/immunology*; Tropomyosin/chemistry
  6. Rosmilah M, Shahnaz M, Zailatul HM, Noormalin A, Normilah I
    Trop Biomed, 2012 Sep;29(3):467-78.
    PMID: 23018510
    Crab is an important source of food allergen. Tropomyosin represents the main crab allergen and is responsible for IgE cross-reactivity between various species of crustaceans. Recently, other new crab allergens including arginine kinase have been identified. However, information on allergens of the local Portunidcrab is not available. Thus, the aim of this study was to identify the major allergens of Portunus pelagicus (blue swimming crab) using the allergenomics approach. Raw and cooked extracts of the crab were prepared from the crab meat. Protein profile and IgE binding pattern were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting using sera from 30 patients with crab allergy. The major allergens of the crab were then identified by two-dimensional electrophoresis (2-DE), followed by mass spectrometry analysis of the peptide digests. The SDS-PAGE of raw extract revealed approximately 20 protein fractions over a wide molecular weight range, while cooked extract demonstrated fewer protein bands. The raw extract also demonstrated a higher number of IgE reactive bands than the cooked extract. A heat-resistant protein of 36 kDa has been identified as the major allergen in both raw and cooked extracts. In addition, a heat-sensitive protein of 41 kDa was also recognized as a major allergen in raw crab. The 2-DE gel profile of the raw extract demonstrated about >100 distinct proteins spots and immunoblotting of the 2-DE profile demonstrated at least 12 different major IgE reactive spots with molecular masses between 13 to 250 kDa and isoelectric point (pI) values ranging from 4.0 to 7.0. The 36 and 41 kDa proteins were identified as the crab tropomyosin and arginine kinase, respectively by mass spectrometry. Therefore, this study confirmed that tropomyosin and arginine kinase are the major allergens of the local Portunid crab, P. pelagicus.
    Matched MeSH terms: Tropomyosin/analysis; Tropomyosin/immunology*
  7. Zailatul HM, Rosmilah M, Faizal B, Noormalin A, Shahnaz M
    Trop Biomed, 2015 Jun;32(2):323-34.
    PMID: 26691261 MyJurnal
    The purpose of this study was to evaluate the effect of different cooking methods on the allergenicity of cockle and to identify proteins most frequently bound by IgE antibodies using a proteomics approach. Raw, boiled, fried and roasted extracts of the cockle were prepared. The protein profiles of the extracts were obtained by separation using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional gel electrophoresis (2-DE). IgE-immunoblotting was then performed with the use of individual sera from patients with cockle allergy and the major IgE-binding proteins were analyzed by mass-spectrometry. SDS-PAGE of raw extract showed 13 protein bands. Smaller numbers of protein bands were detected in the boiled, fried and roasted extracts. The 2-DE gel profile of the raw extract further separated the protein bands to ~50 protein spots with molecular masses between 13 to 180 kDa and isoelectric point (pI) values ranging from 3 to 10. Immunoblotting of raw extract exhibited 11 IgE-binding proteins with two proteins of 36 and 40 kDa as the major IgE-binding proteins, while the boiled extract revealed 3 IgE-binding proteins. Fried and roasted extracts only showed a single IgE-binding protein at 36 kDa. 2-DE immunoblotting of raw extract demonstrated 5 to 20 IgE reactive spots. Mass spectrometry analysis led to identification of 2 important allergens, tropomyosin (36 kDa) and arginine kinase (40 kDa). Heated extracts showed a reduction in the number of IgE-reactive bands compared with raw extract, which suggest that thermal treatment can be used as a tool in attempting to reduce cockle allergenicity. The degree of allergenicity of cockle was demonstrated in the order raw > boiled > fried ≈ roasted. Two important allergens reacting with more than 50% of patients' sera identified using mass spectrometric approaches were tropomyosin and arginine kinase. Thus, allergens found in this study would help in component based diagnosis, management of cockle allergic patients and to the standardisation of allergenic test products as tools in molecular allergology.
    Matched MeSH terms: Tropomyosin/immunology; Tropomyosin/isolation & purification
  8. Rosmilah Misnan, Nurul Izzah Abdul Rahman, Zailatul Hani Mohd Yadzir, Noormalin Abdullah, Mohd Faizal Bakhtiar, Shahnaz Murad
    MyJurnal
    Crab meat is widely consumed in several countries around the world. However, when consumed, crab meat are frequent cause of allergic reactions throughout the world. Scylla serrata is among the most common mud crab in Malaysia. In a previous study two major allergens of mud crab at 36 and 41 kDa was identified. Thus, the aim of this study is to further identify these major allergens by a proteomic approach. Protein extract was prepared and resolved by 2-dimensional electrophoresis (2-DE). Immunoblotting was then performed using reactive sera from patients with crab allergy. Major allergenic spots were then excised from the 2-DE gel and analysed by mass spectrometry. The 2-DE profile of the extract revealed approximately >100 protein spots between pH of 4.00 to 8.00. Mass spectrometry analysis has identified the 36 and 41 kDa proteins as tropomyosin and arginine kinase, respectively. Our findings indicated that tropomyosin and arginine kinase play a major role in allergic reaction to mud crab meat among local patients with crab meat allergy, and should be included in diagnostics and therapeutic strategies of this allergy.
    Matched MeSH terms: Tropomyosin
  9. Muanghorn W, Konsue N, Sham H, Othman Z, Mohamed F, Mohd Noor N, et al.
    J Food Sci Technol, 2018 May;55(5):1960-1965.
    PMID: 29666550 DOI: 10.1007/s13197-018-3104-3
    Effects of food irradiation on allergen and nutritional composition of giant freshwater prawn are not well documented. Thus, this study aimed to investigate the effects of gamma irradiation on tropomyosin allergen, proximate composition, and mineral elements in Macrobrachium rosenbergii. In this study, prawn was peeled, cut into small pieces, vacuum packaged and gamma irradiated at 0, 5, 7, 10 and 15 kGy with a dose rate of 0.5 kGy/h using cobalt-60 as the source, subsequently determined the level of tropomyosin, proximate composition and mineral elements respectively. The results showed that band density of tropomyosin irradiated at 10 and 15 kGy is markedly decreased. Proximate analysis revealed that moisture, protein, and carbohydrate content were significantly different as compared with non-irradiated prawn. Meanwhile, gamma irradiated M. rosenbergii at 15 kGy was observed to be significantly higher in nickel and zinc than the non-irradiated prawn. The findings provide a new information that food irradiation may affect the tropomyosin allergen, proximate composition and mineral elements of the prawn.
    Matched MeSH terms: Tropomyosin
  10. Jasim HA, Misnan R, Yadzir ZHM, Abdullah N, Bakhtiar F, Arip M, et al.
    Iran J Allergy Asthma Immunol, 2021 Feb 11;20(1):76-87.
    PMID: 33639634 DOI: 10.18502/ijaai.v20i1.5414
    Crab allergy is reported as a serious form of food allergy in many countries. This study was aimed to identify the major allergens of the local mud crab, Scylla tranquebarica (S. tranquebarica), and subsequently, determine the effect of vinegar treatments on the crab allergens. Crab muscles were treated with synthetic and natural vinegar. Crab proteins were then extracted from the untreated and vinegar-treated crabs. All extracts were then fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and analyzed by immunoblotting; using sera from crab-allergic patients. The crab proteins were then further fractionated by two-dimensional electrophoresis (2-DE)and analyzed by mass spectrometry (MS). The untreated crab had 38 protein bands, while that was only a few bands between 18 to 73 kDa for the vinegar-treated crabs. Immunoblotting of untreated crab revealed 20 IgE-binding bands, whereas the vinegar-treated crabs could only retain a few IgE-binding bands. Five major allergens were identified with molecular weightsof38, 42, 49, 63, and 73 kDa in the untreated crab. In contrast, the vinegar-treated crabs had only a few major allergens with molecular weights of 38, 42, and 73 kDa. MS identified the 43 and 49 kDa as arginine kinase, while the 38, 63, and 73 kDa were identified as tropomyosin, actin, and hemocyanin, respectively. Inconclusion, we found three common major allergens for S. tranquebarica including tropomyosin, arginine kinase, and actin, and one novel allergen known as hemocyanin. All the major allergens could retain minimal allergenic capability in vinegar-treated crabs, suggesting that vinegar treatments might be useful to reduce crab allergenicity. These data would assist the clinicians in the management of crab-allergic patients worldwide.
    Matched MeSH terms: Tropomyosin
  11. Tan YH, Alias Z
    Trop Biomed, 2020 Sep 01;37(3):744-755.
    PMID: 33612787 DOI: 10.47665/tb.37.3.744
    The study was aimed to investigate the expression of cytosolic and thiolated proteins of Musca domestica larvae under oxidative stress. Proteins from acute treatment of hydrogen peroxide (LC50 = 21.52% (v/v)) on 3rd stage larvae of housefly were extracted and purified using an activated Thiol Sepharose® for thiolated protein purification. Two dimensional gel electrophoresis was used for visualizing and analyzing expression of cytosolic and thiolated proteins. Protein spots with more than 5 fold of expression change were identified using liquid chromatography- tandem mass spectrometry (LC-MS/MS). The cytosolic proteins were actin, tropomyosin, ubiquitin, arginine kinase, pheromone binding protein/general odorant binding protein, and ATP: guanidino phosphotransferase. The thiolated proteins with more than 5 fold change in expression as an effect to the acute treatment were fructose bisphosphate aldolase, short chain dehydrogenase and lactate/malate dehydrogenase. The proteins identified in the study should provide vital information for future reference in oxidative stress defence and response occurring in houseflies.
    Matched MeSH terms: Tropomyosin
  12. Nurul Izzah, A.R., Zailatul Hani, M.Y., Noormalin, A., Faizal, B., Shahnaz, M., Rosmilah, M.
    Medicine & Health, 2015;10(2):90-97.
    MyJurnal
    Crab meat is a valuable source of proteins and functional lipids and it is widely consumed worldwide. However, the prevalence of crab allergy has increased over the past few years. In order to understand crab allergy better, it is necessary to identify crab allergens. The aim of the present study was to compare the IgE-binding proteins of raw and cooked extracts of mud crab (Scylla serrata). Raw and cooked extracts of the mud crab were prepared. Protein profiles and IgE reactivity patterns were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunoblotting using sera from 21 skin prick test (SPT) positive patients. In SDS-PAGE, 20 protein bands (12 to 250 kDa) were observed in the raw extract while the cooked extract demonstrated fewer bands. Protein bands between 40 to 250 kDa were sensitive to heat denaturation and no longer observed in the cooked extract. In immunoblotting experiments, raw and cooked extracts demonstrated 11 and 4 IgE-binding proteins, respectively, with molecular weights of between 23 and 250 kDa. A heat-resistant 36 kDa protein, corresponding to crab tropomyosin was identified as the major allergen of both extracts. In addition, a 41 kDa heat-sensitive protein believed to be arginine kinase was shown to be a major allergen of the raw extract. Other minor allergens were also observed at various molecular weights.
    Matched MeSH terms: Tropomyosin
  13. Mary Margaret, P.D.S., Jinap, S., Ahmad Faizal, A.R.
    MyJurnal
    Allergy caused by food is usually type 1 allergy of four types of allergic reactions. One of the most widespread allergic is those that are caused by crustacean shellfish. Crustaceans are classified among arthropods which include crab, crayfish, lobster, prawn and shrimp. Shrimp which are broadly consumed as nutritional food is one of the most important food that contribute to allergy. Thus, reducing the allergenicity of shrimp allergen will be helpful to individuals who are sensitive to shrimp and for this reason the characteristics of each allergen need to be studied. Those sensitized individuals can develop urticaria, angiodema, laryngospasm, asthma and life threatening anaphylaxis. To date, four main allergens contribute to allergic reactions. They are tropomyosin (TM), a highly conserved and heat stable myofibrillar protein of 35-38 kDa followed by arginine kinase (AK) which is also known as Pen m 2 or Lit v 2 with 40 kDa. Two other contributing allergens are sarcoplasmic calcium-binding protein (SCP) also known as Lit v 4 with 22 kDa and myosin light chain (MLC) which is also termed as Lit v 3 with 20 kDa. This mini-review will provide a better understanding of each allergen derived from shrimp which subsequently will help to reduce the allergenicity.
    Matched MeSH terms: Tropomyosin
  14. Sahabudin S, Misnan R, Yadzir ZH, Mohamad J, Abdullah N, Bakhtiar F, et al.
    Malays J Med Sci, 2011 Jul;18(3):27-32.
    PMID: 22135598 MyJurnal
    BACKGROUND: Prawns and shrimp are a frequent cause of seafood allergy mediated by IgE antibodies. Penaeus monodon and Penaeus latisulcatus, commonly known as black tiger prawn and king prawn, respectively, are among the most frequently consumed prawns in Malaysia. The aim of this study was to identify the IgE-binding proteins of these 2 prawn species.
    METHODS: Raw and boiled prawn extracts were prepared and then resolved by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). IgE-immunoblotting was then performed using sera from patients with positive skin prick tests to the raw prawn extracts.
    RESULTS: SDS-PAGE analysis of the raw extracts of both prawn species revealed 23 protein bands; the boiled extracts yielded fewer protein bands. The bands in the range of 40 to 100 kDa were sensitive to heat and therefore were not found in the boiled extracts. Immunoblot of raw extracts of black tiger prawns and king prawns yielded 14 and 11 IgE-binding proteins, respectively, with molecular weights of between 15 and 200 kDa. Proteins at 36, 42, and 49 kDa were detected as the major allergens in both species of prawns. A protein of 75 kDa was also identified as a major allergen in black tiger prawns. Other potential allergens were also observed at various molecular masses.
    CONCLUSION: Proteins of 36, 42, and 49 kDa were identified as the major allergens of both species of prawns. The 36 and 42 kDa proteins are hypothesised to be tropomyosin and arginine kinase, respectively. A high molecular weight protein of 75 kDa was found to be an additional major allergen in black tiger prawns.
    KEYWORDS: Penaeus; allergens; allergy and clinical immunology; hypersensitivity; immunoblotting; tropomyosin
    Matched MeSH terms: Tropomyosin
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links