MATERIALS AND METHODS: An electronic search was performed in PubMed, SCOPUS, and Web of Science using a combination of relevant keywords: digital workflow, digital designing, computer-assisted design-computer aided manufacturing, 3D printing, maxillectomy, and mandibulectomy. The Joanna Briggs Institute Critical Appraisal Tool was used to assess the quality of evidence in the studies reviewed.
RESULTS: From a total of 542 references, 33 articles were selected, including 25 on maxillary prostheses and 8 on mandibular prostheses. The use of digital workflows was limited to one or two steps of the fabrication of the prostheses, and only four studies described a complete digital workflow. The most preferred method for data acquisition was intraoral scanning with or without a cone beam computed tomography combination.
CONCLUSION: Currently, the fabrication process of maxillofacial prostheses requires combining digital and conventional methods. Simplifying the data acquisition methods and providing user-friendly and affordable software may encourage clinicians to use the digital workflow more frequently for patients requiring maxillofacial prostheses.
METHOD: A qualitative case study evaluation was conducted at a 620-bed public teaching hospital in Malaysia using interview, observation, and document analysis to investigate the features and functions of alert appropriateness and workflow-related issues in cardiological and dermatological settings. The current state map for medication prescribing process was also modelled to identify problems pertinent to CDS alert appropriateness.
RESULTS: The main findings showed that CDS was not well designed to fit into a clinician's workflow due to influencing factors such as technology (usability, alert content, and alert timing), human (training, perception, knowledge, and skills), organizational (rules and regulations, privacy, and security), and processes (documenting patient information, overriding default option, waste, and delay) impeding the use of CDS with its alert function. We illustrated how alert affect workflow in clinical processes using a Lean tool known as value stream mapping. This study also proposes how CDS alerts should be integrated into clinical workflows to optimize their potential to enhance patient safety.
CONCLUSION: The design and implementation of CDS alerts should be aligned with and incorporate socio-technical factors. Process improvement methods such as Lean can be used to enhance the appropriateness of CDS alerts by identifying inefficient clinical processes that impede the fit of these alerts into clinical workflow.
METHOD: Medical image data for five types of defects were selected, segmented, converted and decimated to 3D polygon models on a personal computer. The models were transferred to a computer aided design (CAD) software which aided in designing the prosthesis according to the virtual models. Two templates were designed for each defect, one by an OS (free) system and one by CS. The parameters for analyses were the virtual volume, Dice similarity coefficient (DSC) and Hausdorff's distance (HD) and were executed by the OS point cloud comparison tool.
RESULT: There was no significant difference (p > 0.05) between CS and OS when comparing the volume of the template outputs. While HD was within 0.05-4.33 mm, evaluation of the percentage similarity and spatial overlap following the DSC showed an average similarity of 67.7% between the two groups. The highest similarity was with orbito-facial prostheses (88.5%) and the lowest with facial plate prosthetics (28.7%).
CONCLUSION: Although CS and OS pipelines are capable of producing templates which are aesthetically and volumetrically similar, there are slight comparative discrepancies in the landmark position and spatial overlap. This is dependent on the software, associated commands and experienced decision-making. CAD-based templates can be planned on current personal computers following appropriate decimation.