Displaying all 14 publications

Abstract:
Sort:
  1. Muhamad Ismail NAS, Yap SH, Mohamad Yussoff MA, Nor Muhammad NA, Firdaus-Raih M, Quay DHX
    J Biomol Struct Dyn, 2023;41(13):6027-6039.
    PMID: 35862639 DOI: 10.1080/07391102.2022.2100827
    Burkholderia Lethal Factor 1 (BLF1) is a deamidase first characterized in Burkholderia pseudomallei. This enzyme inhibits cellular protein synthesis by deamidating a glutamine residue to a glutamic acid in its target protein, the eukaryotic translation initiation factor 4 A (eIF4A). In this work, we present the characterization of a hypothetical protein from Xanthomonas sp. Leaf131 as the first report of a BLF1 family ortholog outside of the Burkholderia genus. Although standard sequence similarity searches such as BLAST were not able to detect the homology between the Xanthomonas sp. Leaf131 hypothetical protein sequence and BLF1, our computed structure model for the Xanthomonas sp. hypothetical protein revealed structural similarities with an RMSD of 2.7 Å/164 Cα atoms and a TM-score of 0.72 when superposed. Structural comparisons of the Xanthomonas model structure against BLF1 and Escherichia coli cytotoxic necrotizing factor 1 (CNF1) revealed that the conserved signature LXGC motif and putative catalytic residues are structurally aligned thus signifying a level of functional or mechanistic similarity. Protein-protein docking analysis and molecular dynamics simulations also demonstrated that eIF4A could still be a possible target substrate for deamidation by XLF1 as it is for BLF1. We therefore propose that this Xanthomonas hypothetical protein be renamed as Xanthomonas Lethal Factor 1 (XLF1). Our work also provides further evidence of the utility of programs such as AlphaFold in bridging the computational function annotation transfer gap despite very low sequence identities of under 20%.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Xanthomonas*
  2. Adamu A, Ahmad K, Siddiqui Y, Ismail IS, Asib N, Bashir Kutawa A, et al.
    Molecules, 2021 Jun 25;26(13).
    PMID: 34202405 DOI: 10.3390/molecules26133902
    The bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious rice diseases, causing huge yield losses worldwide. Several technologies and approaches have been opted to reduce the damage; however, these have had limited success. Recently, scientists have been focusing their efforts on developing efficient and environmentally friendly nanobactericides for controlling bacterial diseases in rice fields. In the present study, a scanning electron microscope (SEM), transmission electron microscope (TEM), and a confocal laser scanning microscope (CLSM) were utilized to investigate the mode of actions of ginger EOs on the cell structure of Xoo. The ginger EOs caused the cells to grow abnormally, resulting in an irregular form with hollow layers, whereas the dimethylsulfoxide (DMSO) treatment showed a typical rod shape for the Xoo cell. Ginger EOs restricted the growth and production of biofilms by reducing the number of biofilms generated as indicated by CLSM. Due to the instability, poor solubility, and durability of ginger EOs, a nanoemulsions approach was used, and a glasshouse trial was performed to assess their efficacy on BLB disease control. The in vitro antibacterial activity of the developed nanobactericides was promising at different concentration (50-125 µL/mL) tested. The efficacy was concentration-dependent. There was significant antibacterial activity recorded at higher concentrations. A glasshouse trial revealed that developed nanobactericides managed to suppress BLB disease severity effectively. Treatment at a concentration of 125 μL/mL was the best based on the suppression of disease severity index, AUDPC value, disease reduction (DR), and protection index (PI). Furthermore, findings on plant growth, physiological features, and yield parameters were significantly enhanced compared to the positive control treatment. In conclusion, the results indicated that ginger essential oils loaded-nanoemulsions are a promising alternative to synthetic antibiotics in suppressing Xoo growth, regulating the BLB disease, and enhancing rice yield under a glasshouse trial.
    Matched MeSH terms: Xanthomonas/growth & development*; Xanthomonas/ultrastructure
  3. Choi SH, Vera Cruz CM, Leach JE
    Appl Environ Microbiol, 1998 May;64(5):1663-8.
    PMID: 9572933
    The presence or absence of two DNA modification systems, XorI and XorII, in 195 strains of Xanthomonas oryzae pv. oryzae collected from different major rice-growing countries of Asia was assessed. All four possible phenotypes (XorI+ XorII+, XorI+ XorII-, XorI- XorII+ and XorI- XorII-) were detected in the population at a ratio of approximately 1:2:2:2. The XorI+ XorII+ and XorI- XorII+ phenotypes were observed predominantly in strains from southeast Asia (Philippines, Malaysia, and Indonesia), whereas strains with the phenotypes XorI- XorII- and XorI+ XorII- were distributed in south Asia (India and Nepal) and northeast Asia (China, Korea, and Japan), respectively. Based on the prevalence and geographic distribution of the XorI and XorII systems, we suggest that the XorI modification system originated in northeast Asia and was later introduced to southeast Asia, while the XorII system originated in southeast Asia and moved to northeast Asia and south Asia. Genomic DNA from all tested strains of X. oryzae pv. oryzae that were resistant to digestion by endonuclease XorII or its isoschizomer PvuI also hybridized with a 7.0-kb clone that contained the XorII modification system, whereas strains that were digested by XorII or PvuI lacked DNA that hybridized with the clone. Size polymorphisms were observed in fragments that hybridized with the 7.0-kb clone. However, a single hybridization pattern generally was found in XorII+ strains within a country, indicating clonal maintenance of the XorII methyl-transferase gene locus. The locus was monomorphic for X. oryzae pv. oryzae strains from the Philippines and all strains from Indonesia and Korea.
    Matched MeSH terms: Xanthomonas/enzymology*; Xanthomonas/genetics
  4. Yazid SN, Ahmad K, Razak MSFA, Rahman ZA, Ramachandran K, Mohamad SNA, et al.
    Braz J Biol, 2021;84:e248359.
    PMID: 34730685 DOI: 10.1590/1519-6984.248359
    Bacterial leaf blight (BLB) is one of the major rice diseases in Malaysia. This disease causes substantial yield loss as high as 70%. Development of rice varieties which inherited BLB resistant traits is a crucial approach to promote and sustain rice industry in Malaysia. Hence, this study aims were to enhance BLB disease resistant characters of high yielding commercial variety MR219 through backcross breeding approach with supporting tool of marker-assisted selection (MAS). Broad spectrum BLB resistance gene, Xa7 from donor parent IRBB7 were introgressed into the susceptible MR219 (recurrent parent) using two flanking markers ID7 and ID15. At BC3F4, we managed to generate 19 introgressed lines with homozygous Xa7 gene and showed resistant characteristics as donor parent when it was challenged with Xanthomonas oryzae pv. oryzae through artificial inoculation. Recurrent parent MR219 and control variety, MR263 were found to be severely infected by the disease. The improved lines exhibited similar morphological and yield performance characters as to the elite variety, MR219. Two lines, PB-2-107 and PB-2-34 were chosen to be potential lines because of their outstanding performances compared to parent, MR219. This study demonstrates a success story of MAS application in development of improved disease resistance lines of rice against BLB disease.
    Matched MeSH terms: Xanthomonas*
  5. Ference CM, Gochez AM, Behlau F, Wang N, Graham JH, Jones JB
    Mol Plant Pathol, 2018 Jun;19(6):1302-1318.
    PMID: 29105297 DOI: 10.1111/mpp.12638
    Taxonomic status: Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas citri ssp. citri (Xcc). Host range: Compatible hosts vary in their susceptibility to citrus canker (CC), with grapefruit, lime and lemon being the most susceptible, sweet orange being moderately susceptible, and kumquat and calamondin being amongst the least susceptible. Microbiological properties: Xcc is a rod-shaped (1.5-2.0 × 0.5-0.75 µm), Gram-negative, aerobic bacterium with a single polar flagellum. The bacterium forms yellow colonies on culture media as a result of the production of xanthomonadin. Distribution: Present in South America, the British Virgin Islands, Africa, the Middle East, India, Asia and the South Pacific islands. Localized incidence in the USA, Argentina, Brazil, Bolivia, Uruguay, Senegal, Mali, Burkina Faso, Tanzania, Iran, Saudi Arabia, Yemen and Bangladesh. Widespread throughout Paraguay, Comoros, China, Japan, Malaysia and Vietnam. Eradicated from South Africa, Australia and New Zealand. Absent from Europe.
    Matched MeSH terms: Xanthomonas/pathogenicity*
  6. Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Hasan MM, Oladosu YA, et al.
    Mol Biol Rep, 2019 Feb;46(1):1519-1532.
    PMID: 30628024 DOI: 10.1007/s11033-019-04584-2
    Breeding for disease resistant varieties remains very effective and economical in controlling the bacterial leaf blight (BLB) of rice. Breeders have played a major role in developing resistant rice varieties against the BLB infection which has been adjudged to be a major disease causing significant yield reduction in rice. It would be difficult to select rice crops with multiple genes of resistance using the conventional approach alone. This is due to masking effect of genes including epistasis. In addition, conventional breeding takes a lot of time before a gene of interest can be introgressed. Linkage drag is also a major challenge in conventional approach. Molecular breeding involving markers has facilitated the characterization and introgression of BLB disease resistance genes. Biotechnology has brought another innovation in form of genetic engineering (transgenesis) of rice. Although, molecular breeding cannot be taken as a substitute for conventional breeding, molecular approach for combating BLB disease in rice is worthwhile given the demand for increased production of rice in a fast growing population of our society. This present article highlights the recent progress from conventional to molecular approach in breeding for BLB disease resistant rice varieties.
    Matched MeSH terms: Xanthomonas/genetics; Xanthomonas/pathogenicity; Xanthomonas/physiology*
  7. Awaludin N, Abdullah J, Salam F, Ramachandran K, Yusof NA, Wasoh H
    Anal Biochem, 2020 12 01;610:113876.
    PMID: 32750357 DOI: 10.1016/j.ab.2020.113876
    The identification of rice bacterial leaf blight disease requires a simple, rapid, highly sensitive, and quantitative approach that can be applied as an early detection monitoring tool in rice health. This paper highlights the development of a turn-off fluorescence-based immunoassay for the early detection of Xanthomonas oryzae pv. oryzae (Xoo), a gram-negative bacterium that causes rice bacterial leaf blight disease. Antibodies against Xoo bacterial cells were produced as specific bio-recognition molecules and the conjugation of these antibodies with graphene quantum dots and gold nanoparticles was performed and characterized, respectively. The combination of both these bio-probes as a fluorescent donor and metal quencher led to changes in the fluorescence signal. The immunoreaction between AntiXoo-GQDs, Xoo cells, and AntiXoo-AuNPs in the immuno-aggregation complex led to the energy transfer in the turn-off fluorescence-based quenching system. The change in fluorescence intensity was proportional to the logarithm of Xoo cells in the range of 100-105 CFU mL-1. The limit of detection was achieved at 22 CFU mL-1 and the specificity test against other plant disease pathogens showed high specificity towards Xoo. The detection of Xoo in real plant samples was also performed in this study and demonstrated satisfactory results.
    Matched MeSH terms: Xanthomonas/immunology; Xanthomonas/isolation & purification*
  8. Hata EM, Yusof MT, Zulperi D
    Plant Pathol J, 2021 Apr;37(2):173-181.
    PMID: 33866759 DOI: 10.5423/PPJ.OA.05.2020.0083
    The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and β,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 μmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.
    Matched MeSH terms: Xanthomonas
  9. Shafiei SNS, Ahmad K, Ikhsan NFM, Ismail SI, Sijam K
    Braz J Biol, 2020 2 20;81(1):11-17.
    PMID: 32074168 DOI: 10.1590/1519-6984.206124
    Xanthomonas oryzae pv. oryzae (Xoo), a pathogen responsible for rice bacterial leaf blight, produces biofilm to protect viable Xoo cells from antimicrobial agents. A study was conducted to determine the potency of Acacia mangium methanol (AMMH) leaf extract as a Xoo biofilm inhibitor. Four concentrations (3.13, 6.25, 9.38, and 12.5 mg/mL) of AMMH leaf extract were tested for their ability to inhibit Xoo biofilm formation on a 96-well microtiter plate. The results showed that the negative controls had the highest O.D. values from other treatments, indicating the intense formation of biofilm. This was followed by the positive control (Streptomycin sulfate, 0.2 mg/mL) and AMMH leaf extract at concentration 3.13 mg/mL, which showed no significant differences in their O.D. values (1.96 and 1.57, respectively). All other treatments at concentrations of 6.25, 9.38, and 12.5 mg/mL showed no significant differences in their O.D. values (0.91, 0.79, and 0.53, respectively). For inhibition percentages, treatment with concentration 12.5 mg/mL gave the highest result (81.25%) followed by treatment at concentrations 6.25 and 9.38 mg/mL that showed no significant differences in their inhibition percentage (67.75% and 72.23%, respectively). Concentration 3.13 mg/mL resulted in 44.49% of biofilm inhibition and the positive control resulted in 30.75% of biofilm inhibition. Confocal laser scanning microscopy (CLSM) analysis of Xoo biofilm inhibition and breakdown showed the presence of non-viable Xoo cells and changes in aggregation size due to increase in AMMH leaf extract concentration. Control slides showed the absence of Xoo dead cells.
    Matched MeSH terms: Xanthomonas
  10. Syed-Ab-Rahman SF, Carvalhais LC, Omar D
    Heliyon, 2020 Jan;6(1):e03151.
    PMID: 32042948 DOI: 10.1016/j.heliyon.2019.e03151
    Bacterial leaf blight (BLB) and sheath brown rot (SBR), caused by Xanthomonas oryzae pv. oryzae (Xoo) and Pseudomonas fuscovaginae, respectively, are bacterial diseases that lead to substantial yield losses in rice. Natural plant-based products represent a sustainable alternative to combat bacterial diseases due to their biodegradability and overall safety. However efficient ways of delivering them are crucial to their success. In an attempt to maximize the antibacterial properties of botanical bactericides for the control of these pathogens, this study evaluated the efficiency of different emulsion formulations of Piper sarmentosum extracts. The emulsion formulations were demonstrated to be effective in controlling BLB and SBR of rice in in vitro plate assays and in planta under glasshouse conditions. The observed in vitro inhibition of the bacterial pathogens and significant disease suppression in planta indicate that these plant extract formulations represent promising alternatives to be adopted in management strategies for controlling rice diseases.
    Matched MeSH terms: Xanthomonas
  11. Mariam AL, Zakri AH, Mahani MC, Normah MN
    Theor Appl Genet, 1996 Oct;93(5-6):664-71.
    PMID: 24162392 DOI: 10.1007/BF00224060
    Crosses were made between four varieties ('Mahsuri', 'Setanjung", 'MR84" and 'MR103") of Oryza sativa L. (2n=24, AA) and one accession of O. minuta (2n= 8, BBCC). The seed set obtained ranged between 9.5% and 25.1% depending on the rice variety used. By rescuing 14-day-old embryos and culturing them on 25%-strength MS medium we obtained a total of 414 F1 hybrids. The F1s were vigorous, tillered profusely, were perennial and male-sterile. The hybrids were triploid (ABC) with 36 chromosomes and showed irregular meiosis. The average frequency and range of chromosome associations at metaphase I or early anaphase I pollen mother cells of F1 plants were 29.31(16-36) Is +3.32(0-10) IIs+0.016(0-1) IIIs+0.002(0-1) IVs. Upon backcrossing the original triploid hybrids and colchicine-treated hybrids to their respective recurrent parents, and further embryo rescue, 17 backcross-1 (BC1) plants were obtained. Of all the crosses using MR84, no BC1 plant was obtained even after pollinating 13 894 spikelets of the triploid hybrid. The BC1s were similar in appearence to the F1s and were male-sterile, their chromosome number ranged from 44 to 48. By backcrossing these BC1s and nurturing them through embryo rescue, we obtained 32 BC2 plants. Of these, however, only 18 plants grew vigorously. One of these plants has 24 chromosomes and the other 17 have chromosome numbers ranging between 30 and 37. The 24-chromosome plant was morphologically similar to the O. sativa parent and was partially fertile with a pollen and spikelet fertility of 58.8% and 12.5% respectively. All of the F1 and BC1 plants were found to be resistant to five Malaysian isolates (XO66, XO99, XO100, XO257 and XO319) of Xanthomonas campestris pv oryzae. Amongst the BC2s, the reaction varied from resistant to moderately susceptible. The 24-chromosome BC2 plant was resistant to the four isolates and moderately resistant to isolate XO100 to which the O. sativa parent was susceptible.
    Matched MeSH terms: Xanthomonas campestris
  12. Afolabi O, Milan B, Amoussa R, Koebnik R, Poulin L, Szurek B, et al.
    Plant Dis, 2014 Oct;98(10):1426.
    PMID: 30703943 DOI: 10.1094/PDIS-05-14-0504-PDN
    On May 9, 2013, symptoms reminiscent of bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola were observed on rice plants at the panicle emergence stage at Musenyi, Gihanga, and Rugombo fields in Burundi. Affected leaves showed water-soaked translucent lesions and yellow-brown to black streaks, sometimes with visible exudates on leaf surfaces. Symptomatic leaves were ground in sterile water and the suspensions obtained were subjected to a multiplex PCR assay diagnostic for X. oryzae pathovars (3). Three DNA fragments (331, 691, and 945 bp) corresponding to X. oryzae pv. oryzicola were observed after agarose gel electrophoresis. Single bacterial colonies were then isolated from surface-sterilized, infected leaves after grinding in sterile water and plating of 10-fold dilutions of the cell suspension on semi-selective PSA medium (4). After incubation at 28°C for 5 days, each of four independent cultures yielded single yellow, mucoid Xanthomonas-like colonies (named Bur_1, Bur_2, Bur_6, and Bur_7) that resembled the positive control strain MAI10 (1). These strains originated from Musenyi (Bur_1), Gihanga (Bur_2), and Rugumbo (Bur_6 and Bur_7). Multiplex PCR assays on the four putative X. oryzae pv. oryzicola strains yielded the three diagnostic DNA fragments mentioned above. All strains were further analyzed by sequence analysis of portions of the gyrB gene using the universal primers gyrB1-F and gyrB1-R for PCR amplification (5). The 762-bp DNA fragment was identical to gyrB sequences from the Asian X. oryzae pv. oryzicola strains BLS256 (Philippines), ICMP 12013 (China), LMG 797 and NCPPB 2921 (both Malaysia), and from the African strain MAI3 (Mali) (2). The partial nucleotide sequence of the gyrB gene of Bur_1 was submitted to GenBank (Accession No. KJ801400). Pathogenicity tests were performed on greenhouse-grown 4-week-old rice plants of the cvs. Nipponbare, Azucena, IRBB 1, IRBB 2, IRBB 3, IRBB 7, FKR 14, PNA64F4-56, TCS 10, Gigante, and Adny 11. Bacterial cultures were grown overnight in PSA medium and re-suspended in sterile water (1 × 108 CFU/ml). Plants were inoculated with bacterial suspensions either by spraying or by leaf infiltration (1). For spray inoculation, four plants per accession and strain were used while three leaves per plant and four plants per accession and strain were inoculated by tissue infiltration. After 15 days of incubation in a BSL-3 containment facility (27 ± 1°C with a 12-h photoperiod), the spray-inoculated plants showed water-soaked lesions with yellow exudates identical to those seen in the field. For syringe-infiltrated leaves, the same symptoms were observed at the infiltrated leaf area. Re-isolation of bacteria from symptomatic leaves yielded colonies with the typical Xanthomonas morphology that were confirmed by multiplex PCR to be X. oryzae pv. oryzicola, thus fulfilling Koch's postulates. Bur_1 has been deposited in the Collection Française de Bactéries Phytopathogènes as strain CFBP 8170 ( http://www.angers-nantes.inra.fr/cfbp/ ). To our knowledge, this is the first report of X. oryzae pv. oryzicola causing bacterial leaf streak on rice in Burundi. Further surveys will help to assess its importance in the country. References: (1) C. Gonzalez et al., Mol. Plant Microbe Interact. 20:534, 2007. (2) A. Hajri et al. Mol. Plant Pathol. 13:288, 2012. (3) J. M. Lang et al. Plant Dis. 94:311, 2010. (4) L. Poulin et al. Plant Dis. 98:1423, 2014. (5) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.
    Matched MeSH terms: Xanthomonas
  13. Daungfu O, Youpensuk S, Lumyong S
    Trop Life Sci Res, 2019 Jan;30(1):73-88.
    PMID: 30847034 DOI: 10.21315/tlsr2019.30.1.5
    Citrus canker caused by Xanthomonas citri subsp. citri is a disease affecting the yield and fruit quality of lime (Citrus aurantiifolia). This research investigated endophytic bacteria obtained from six healthy Citrus spp. to inhibit the pathogen and to control citrus canker on lime plants. Numbers of the endophytic bacteria isolated from C. aurantifolia, C. hystrix, C. maxima, C. nobilis, C. reticulata and C. sinensis were 28, 25, 29, 42, 12 and 34 isolates, respectively. The selected endophytic bacteria that were effective against X. citri subsp. citri were Bacillus amyloliquefaciens LE109, B. subtilis LE24 and B. tequilensis PO80. The optimum culture medium for an antagonistic effect on the pathogen in B. amyloliquefaciens LE109 and B. tequilensis PO80 was yeast extract peptone dextrose broth, and in B. subtilis LE24 was modified soluble starch broth. To control citrus canker in lime, young expanded leaves of lime plants were aseptically punctured and inoculated with 30 μl of bacterial suspension of the pathogen (108 CFU/ml in 0.85% NaCl) per punctured location. After the pathogenic inoculation for 24 h, the leaves were then inoculated with 30 μl of the selected endophytic bacteria (108 CFU/ml in 0.85% NaCl), and treated with 30 μl of the culture media containing bioactive compounds produced by the selected endophytic bacteria. The leaves inoculated with cell suspensions of B. amyloliquefaciens LE109 or B. subtilis LE24 could completely control citrus canker. However, the leaves inoculated with B. tequilensis PO80 displayed 10% disease incidence. Additionally, the leaves treated with the crude bioactive compounds of B. amyloliquefaciens LE109 or B. subtilis LE24 could completely control citrus canker. Notably, the leaves treated with the crude bioactive compounds of B. tequilensis PO80 displayed 5% disease incidence. The results of this study showed that the Bacillus strains play important roles in the biocontrol of citrus canker in lime.
    Matched MeSH terms: Xanthomonas
  14. Adhikari TB, Cruz C, Zhang Q, Nelson RJ, Skinner DZ, Mew TW, et al.
    Appl Environ Microbiol, 1995 Mar;61(3):966-71.
    PMID: 16534980
    Restriction fragment length polymorphism and virulence analyses were used to evaluate the population structure of Xanthomonas oryzae pv. oryzae, the rice bacterial blight pathogen, from several rice-growing countries in Asia. Two DNA sequences from X. oryzae pv. oryzae, IS1112, an insertion sequence, and avrXa10, a member of a family of avirulence genes, were used as probes to analyze the genomes of 308 strains of X. oryzae pv. oryzae collected from China, India, Indonesia, Korea, Malaysia, Nepal, and the Philippines. On the basis of the consensus of three clustering statistics, the collection formed five clusters. Genetic distances within the five clusters ranged from 0.16 to 0.51, and distances between clusters ranged from 0.48 to 0.64. Three of the five clusters consisted of strains from a single country. Strains within two clusters, however, were found in more than one country, suggesting patterns of movement of the pathogen. The pathotype of X. oryzae pv. oryzae was determined for 226 strains by inoculating five rice differential cultivars. More than one pathotype was associated with each cluster; however, some pathotypes were associated with only one cluster. Most strains from South Asia (Nepal and India) were virulent to cultivars containing the bacterial blight resistance gene xa-5, while most strains from other countries were avirulent to xa-5. The regional differentiation of clusters of X. oryzae pv. oryzae in Asia and the association of some pathotypes of X. oryzae pv. oryzae with single clusters suggested that strategies that target regional resistance breeding and gene deployment are feasible.
    Matched MeSH terms: Xanthomonas
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links