MATERIALS AND METHODS: A total of 27 snake carcasses presented for necropsy at the Universiti Putra Malaysia (UPM) were used in this survey. Samples were aseptically obtained at necropsy from different organs/tissues (lung, liver, heart, kindey, oesophagus, lymph node, stomach, spinal cord, spleen, intestine) and cultured onto 5% blood and McConkey agar, respectively. Gram staining, morphological evaluation and biochemical test such as oxidase, catalase and coagulase were used to tentatively identify the presumptive bacterial isolates.
RESULTS: Pythons had the highest number of cases (81.3%) followed by anaconda (14.8%) and boa (3.7%). Mixed infection accounted for 81.5% in all snakes and was highest in pythons (63%). However, single infection was only observed in pythons (18.5%). A total of 82.7%, 95.4% and 100% of the bacterial isolates from python, anaconda and boa, respectively were gram negative. Aeromonas spp was the most frequently isolated bacteria in pythons and anaconda with incidences of 25 (18%) and 8 (36.6%) with no difference (p > 0.05) in incidence, respectively, while Salmonella spp was the most frequently isolated in boa and significantly higher (p
METHODOLOGY: A pair of degenerate primers (Aero F: 5'-YGARATCGAYATCGCCAARCGB-3' and Aero R: 5'-GRCCDATGCTCATRCGRCGGTT-3') was designed that amplified the rpoD gene of 27 Aeromonas species. Subsequently, in silico analysis enabled the differentiation of 25 species using the single restriction endonuclease AluI, while 2 species, A. sanarelli and A. taiwanensis, required an additional restriction endonuclease, HpyCH4IV. Twelve type strains (A. hydrophila ATCC7966T, A. caviae ATCC15468T, A. veronii ATCC9071T, A. media DSM4881T, A. allosaccharophila DSM11576T, A. dhakensis DSM17689T, A. enteropelogens DSM7312T, A. jandaei DSM7311T, A. rivuli DSM22539T, A. salmonicida ATCC33658T, A. taiwanensis DSM24096T and A. sanarelli DSM24094T) were randomly selected from the 27 Aeromonas species for experimental validation.Results/key findings. The twelve type strains demonstrated distinctive RFLP patterns and supported the in silico digestion. Subsequently, 60 clinical and environmental strains from our collection, comprising nine Aeromonas species, were used for screening examinations, and the results were in agreement.
CONCLUSION: This method provides an alternative method for laboratory identification, surveillance and epidemiological investigations of clinical and environmental specimens.
METHODS: A total of 210 Aeromonas clinical isolates were investigated: 116 from Singapore General Hospital and 94 archived clinical isolates from University of Malaya Medical Center, Malaysia. The isolates were genetically identified based on the gcat gene screening and the partial sequences of the rpoD housekeeping gene. Genetic relatedness, distribution of 15 virulence genes and 4 beta-lactamase resistance genes, and susceptibility patterns to 11 antimicrobial agents were compared.
RESULTS: Of the 210 Aeromonas isolates, A. dhakensis-94 (45%) was the dominant species in Singapore and Malaysia. Species composition was similar and enterobacterial repetitive intergenic consensus-PCR did not show genetic relatedness between strains from the two countries. Of the 15 virulence genes, A. dhakensis and A. hydrophila harbored the most compared with other species. Different combinations of 9 virulence genes (exu, fla, lip, eno, alt, dam, hlyA, aexU, and ascV) were present in A. dhakensis, A. hydrophila, and A. veronii from both the countries. Distribution of virulence genes was species and anatomic site related. Majority (>80%) of the strains were susceptible to all antimicrobial agents tested, except amoxicillin and cephalothin. A. dhakensis strains from Malaysia significantly harbored the cphA gene compared with A. dhakensis from Singapore. Multidrug resistance was mostly detected in strains from peritoneal fluids of dialysis patients.
CONCLUSION: This study revealed A. dhakensis as the dominant species isolated in both geographic regions, and that it carried a high number of virulence genes. It also highlights the geographic-related differences of virulence gene distribution and antimicrobial resistance profiles of clinical Aeromonas strains from Singapore and Malaysia.