Displaying publications 1 - 20 of 79 in total

Abstract:
Sort:
  1. Tan JY, Tan CY, Yahya MA, Shahrizaila N, Goh KJ
    Muscle Nerve, 2024 May;69(5):597-603.
    PMID: 38488306 DOI: 10.1002/mus.28081
    INTRODUCTION/AIMS: Muscle strength, functional status, and muscle enzymes are conventionally used to evaluate disease status in idiopathic inflammatory myopathies (IIM). This study aims to investigate the role of quantitative muscle ultrasound in evaluating disease status in IIM patients.

    METHODS: Patients with IIM, excluding inclusion body myositis, were recruited along with age- and sex-matched healthy controls (HC). All participants underwent muscle ultrasound and clinical assessments. Six limb muscles were unilaterally scanned using a standardized protocol, measuring muscle thickness (MT) and echo intensity (EI). Results were compared with HC, and correlations were made with outcome measures.

    RESULTS: Twenty IIM patients and 24 HC were recruited. The subtypes of IIM were dermatomyositis (6), necrotizing myositis (6), polymyositis (3), antisynthetase syndrome (3), and nonspecific myositis (2). Mean disease duration was 8.7 ± 6.9 years. There were no significant differences in demographics and anthropometrics between patients and controls. MT of rectus femoris in IIM patients was significantly lower than HC. Muscle EI of biceps brachii and vastus medialis in IIM patients were higher than HC. There were moderate correlations between MT of rectus femoris and modified Rankin Scale, Physician Global Activity Assessment, and Health Assessment Questionnaire, as well as between EI of biceps brachii and Manual Muscle Testing-8.

    DISCUSSION: Muscle ultrasound can detect proximal muscle atrophy and hyperechogenicity in patients with IIM. The findings correlate with clinical outcome measures, making it a potential tool for evaluating disease activity of patients with IIM in the late phase of the disease.

    Matched MeSH terms: Muscular Atrophy/pathology
  2. Siti Aishah AA, Normala I, Faruque Reza M, M Iqbal S
    Med J Malaysia, 2023 Jan;78(1):46-53.
    PMID: 36715191
    INTRODUCTION: Studies are lacking in evaluating brain atrophy patterns in the Malaysian population. This study aimed to compare the patterns of cerebral atrophy and impaired glucose metabolism on 18F-FDG PET/CT imaging in various stages of AD in a Klang Valley population by using voxelbased morphometry in SPM12.

    MATERIALS AND METHODS: 18F-FDG PET/CT images of 14 healthy control (HC) subjects (MoCA score > 26 (mean+SD~ 26.93+0.92) with no clinical evidence of cognitive deficits or neurological disease) and 16 AD patients (MoCA ≤22 (mean+SD~18.6+9.28)) were pre-processed in SPM12 while using our developed Malaysian healthy control brain template. The AD patients were assessed for disease severity using ADAS-Cog neuropsychological test. KNE96 template was used for registration-induced deformation in comparison with the ICBM templates. All deformation fields were corrected using the Malaysian healthy control template. The images were then nonlinearly modified by DARTEL to segment grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) to produce group-specific templates. Age, intracranial volume, MoCA score, and ADASCog score were used as variables in two sample t test between groups. The inference of our brain analysis was based on a corrected threshold of p<0.001 using Z-score threshold of 2.0, with a positive value above it as hypometabolic. The relationship between regional atrophy in GM and WM atrophy were analysed by comparing the means of cortical thinning between normal control and three AD stages in 15 clusters of ROI based on Z-score less than 2.0 as atrophied.

    RESULTS: One-way ANOVA indicated that the means were equal for TIV, F(2,11) = 1.310, p=0.309, GMV, F(2,11) = 0.923, p=0.426, WMV, F(2,11) = 0.158, p=0.856 and CSF, F(2,11) = 1.495 p=0.266. Pearson correlations of GM, WM and CSF volume between HC and AD groups indicated the presence of brain atrophy in GM (p=-0.610, p<0.0001), WM (p=-0.178, p=0.034) and TIV (p=-0.374, p=0.042) but showed increased CSF volume (p=0.602, p<0.0001). Voxels analysis of the 18FFDG PET template revealed that GM atrophy differs significantly between healthy control and AD (p<0.0001). Zscore comparisons in the region of GM & WM were shown to distinguish AD patients from healthy controls at the prefrontal cortex and parahippocampal gyrus. The atrophy rate within each ROI is significantly different between groups (c2=35.9021, df=3, p<0.0001), Wilcoxon method test showed statistically significant differences were observed between Moderate vs. Mild AD (p<0.0001), Moderate AD vs. healthy control (p=0.0005), Mild AD vs. HC (p=0.0372) and Severe AD vs. Moderate AD (p<0.0001). The highest atrophy rate within each ROI between the median values ranked as follows severe AD vs. HC (p<0.0001) > mild AD vs. HC (p=0.0091) > severe AD vs. moderate AD (p=0.0143).

    CONCLUSION: We recommend a reliable method in measuring the brain atrophy and locating the patterns of hypometabolism using a group-specific template registered to a quantitatively validated KNE96 group-specific template. The studied regions together with neuropsychological test approach is an effective method for the determination of AD severity in a Malaysian population.

    Matched MeSH terms: Atrophy/metabolism; Atrophy/pathology
  3. Tan CT
    J Neurol Neurosurg Psychiatry, 1985 Mar;48(3):285-6.
    PMID: 3981204
    Matched MeSH terms: Muscular Atrophy/diagnosis*
  4. Sakamoto M, Iwama K, Sasaki M, Ishiyama A, Komaki H, Saito T, et al.
    Genet Med, 2022 Dec;24(12):2453-2463.
    PMID: 36305856 DOI: 10.1016/j.gim.2022.08.007
    PURPOSE: Cerebellar hypoplasia and atrophy (CBHA) in children is an extremely heterogeneous group of disorders, but few comprehensive genetic studies have been reported. Comprehensive genetic analysis of CBHA patients may help differentiating atrophy and hypoplasia and potentially improve their prognostic aspects.

    METHODS: Patients with CBHA in 176 families were genetically examined using exome sequencing. Patients with disease-causing variants were clinically evaluated.

    RESULTS: Disease-causing variants were identified in 96 of the 176 families (54.5%). After excluding 6 families, 48 patients from 42 families were categorized as having syndromic associations with CBHA, whereas the remaining 51 patients from 48 families had isolated CBHA. In 51 patients, 26 aberrant genes were identified, of which, 20 (76.9%) caused disease in 1 family each. The most prevalent genes were CACNA1A, ITPR1, and KIF1A. Of the 26 aberrant genes, 21 and 1 were functionally annotated to atrophy and hypoplasia, respectively. CBHA+S was more clinically severe than CBHA-S. Notably, ARG1 and FOLR1 variants were identified in 2 families, leading to medical treatments.

    CONCLUSION: A wide genetic and clinical diversity of CBHA was revealed through exome sequencing in this cohort, which highlights the importance of comprehensive genetic analyses. Furthermore, molecular-based treatment was available for 2 families.

    Matched MeSH terms: Atrophy/genetics
  5. Leung AKC, Lam JM, Leong KF
    Case Rep Pediatr, 2020;2020:8813809.
    PMID: 33101749 DOI: 10.1155/2020/8813809
    Cutis marmorata telangiectatica congenita is characterized by the presence of a bluish-purple reticulated cutaneous vascular network on the skin intermixed with telangiectasia and occasionally prominent veins at birth. Areas of the skin within the reticulated cutaneous vascular network may be normal, erythematous, atrophic, and, at times, ulcerated. Areas of ulcerations and focal cutaneous and subcutaneous atrophy occasionally occur resulting in body asymmetry. On the other hand, cutaneous and subcutaneous atrophy, extensive and severe enough leading to hemiatrophy, of the entire limb is rare. A search of the English literature revealed only eight documented cases to which we are adding two more cases.
    Matched MeSH terms: Atrophy
  6. Ramli N, Nair SR, Ramli NM, Lim SY
    Clin Radiol, 2015 May;70(5):555-64.
    PMID: 25752581 DOI: 10.1016/j.crad.2015.01.005
    The purpose of this review is to illustrate the differentiating features of multiple-system atrophy from Parkinson's disease at MRI. The various MRI sequences helpful in the differentiation will be discussed, including newer methods, such as diffusion tensor imaging, MR spectroscopy, and nuclear imaging.
    Matched MeSH terms: Multiple System Atrophy/diagnosis*
  7. Mohamed KN
    Ann Trop Med Parasitol, 1990 Dec;84(6):637-9.
    PMID: 2076042
    Matched MeSH terms: Optic Atrophy/etiology*
  8. Gandhi G, Abdullah S, Foead AI, Yeo WWY
    J Neurol Sci, 2021 08 15;427:117485.
    PMID: 34015517 DOI: 10.1016/j.jns.2021.117485
    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by low levels of full-length survival motor neuron (SMN) protein due to the loss of the survival motor neuron 1 (SMN1) gene and inefficient splicing of the survival motor neuron 2 (SMN2) gene, which mostly affects alpha motor neurons of the lower spinal cord. Despite the U.S. Food and Drug Administration (FDA) approved SMN-dependent therapies including Nusinersen, Zolgensma® and Evrysdi™, SMA is still a devastating disease as these existing expensive drugs may not be sufficient and thus, remains a need for additional therapies. The involvement of microRNAs (miRNAs) in SMA is expanding because miRNAs are important mediators of gene expression as each miRNA could target a number of genes. Hence, miRNA-based therapy could be utilized in treating this genetic disorder. However, the delivery of miRNAs into the target cells remains an obstacle in SMA, as there is no effective delivery system to date. This review highlights the potential strategies for intracellular miRNA delivery into target cells and current challenges in miRNA delivery. Furthermore, we provide the future prospects of miRNA-based therapeutic strategies in SMA.
    Matched MeSH terms: Muscular Atrophy/pathology
  9. Leduc-Gaudet JP, Franco-Romero A, Cefis M, Moamer A, Broering FE, Milan G, et al.
    Nat Commun, 2023 Mar 02;14(1):1199.
    PMID: 36864049 DOI: 10.1038/s41467-023-36817-1
    Autophagy is a critical process in the regulation of muscle mass, function and integrity. The molecular mechanisms regulating autophagy are complex and still partly understood. Here, we identify and characterize a novel FoxO-dependent gene, d230025d16rik which we named Mytho (Macroautophagy and YouTH Optimizer), as a regulator of autophagy and skeletal muscle integrity in vivo. Mytho is significantly up-regulated in various mouse models of skeletal muscle atrophy. Short term depletion of MYTHO in mice attenuates muscle atrophy caused by fasting, denervation, cancer cachexia and sepsis. While MYTHO overexpression is sufficient to trigger muscle atrophy, MYTHO knockdown results in a progressive increase in muscle mass associated with a sustained activation of the mTORC1 signaling pathway. Prolonged MYTHO knockdown is associated with severe myopathic features, including impaired autophagy, muscle weakness, myofiber degeneration, and extensive ultrastructural defects, such as accumulation of autophagic vacuoles and tubular aggregates. Inhibition of the mTORC1 signaling pathway in mice using rapamycin treatment attenuates the myopathic phenotype triggered by MYTHO knockdown. Skeletal muscles from human patients diagnosed with myotonic dystrophy type 1 (DM1) display reduced Mytho expression, activation of the mTORC1 signaling pathway and impaired autophagy, raising the possibility that low Mytho expression might contribute to the progression of the disease. We conclude that MYTHO is a key regulator of muscle autophagy and integrity.
    Matched MeSH terms: Muscular Atrophy/genetics
  10. Krishnan K, Law ZK, Woodhouse LJ, Dineen RA, Sprigg N, Wardlaw JM, et al.
    Stroke Vasc Neurol, 2023 Apr;8(2):151-160.
    PMID: 36202546 DOI: 10.1136/svn-2021-001375
    BACKGROUND AND PURPOSE: Intracerebral haemorrhage volume (ICHV) is prognostically important but does not account for intracranial volume (ICV) and cerebral parenchymal volume (CPV). We assessed measures of intracranial compartments in acute ICH using computerised tomography scans and whether ICHV/ICV and ICHV/CPV predict functional outcomes. We also assessed if cistern effacement, midline shift, old infarcts, leukoaraiosis and brain atrophy were associated with outcomes.

    METHODS: Data from 133 participants from the Rapid Intervention with Glyceryl Trinitrate in Hypertensive Stroke-2 Trial trial were analysed. Measures included ICHV (using ABC/2) and ICV (XYZ/2) (by independent observers); ICHV, ICV and CPV (semiautomated segmentation, SAS); atrophy (intercaudate distance, ICD, Sylvian fissure ratio, SFR); midline shift; leukoaraiosis and cistern effacement (visual assessment). The effects of these measures on death at day 4 and poor functional outcome at day 90 (modified Rankin scale, mRS of >3) was assessed.

    RESULTS: ICV was significantly different between XYZ and SAS: mean (SD) of 1357 (219) vs 1420 (196), mean difference (MD) 62 mL (p<0.001). There was no significant difference in ICHV between ABC/2 and SAS. There was very good agreement for ICV measured by SAS, CPV, ICD, SFR, leukoaraiosis and cistern score (all interclass correlations, n=10: interobserver 0.72-0.99, intraobserver 0.73-1.00). ICHV/ICV and ICHV/CPV were significantly associated with mRS at day 90, death at day 4 and acute neurological deterioration (all p<0.05), similar to ICHV. Midline shift and cistern effacement at baseline were associated with poor functional outcome but old infarcts, leukoaraiosis and brain atrophy were not.

    CONCLUSIONS: Intracranial compartment measures and visual estimates are reproducible. ICHV adjusted for ICH and CPV could be useful to prognosticate in acute stroke. The presence of midline shift and cistern effacement may predict outcome but the mechanisms need validation in larger studies.

    Matched MeSH terms: Atrophy/complications
  11. Ng SY, D'Arcy C, Orchard D
    Australas J Dermatol, 2015 Nov;56(4):e102-4.
    PMID: 24635514 DOI: 10.1111/ajd.12159
    Lipoatrophic panniculitis is a rare condition affecting mainly children, often associated with connective tissue disease. We report a healthy 12-month-old girl with no clinical or laboratory features of connective tissue disease who presented with the progressive appearance of annular atrophic plaques beginning at the left arm. A histopathological analysis revealed lobular panniculitis, with fat necrosis and an associated inflammatory infiltrate supporting the diagnosis of lipoatrophic panniculitis. Lipoatrophic panniculitis should be considered in infants and young children with clinical features of panniculitis and fat atrophy even without clinical or serologic evidence of connective tissue disease.
    Matched MeSH terms: Atrophy
  12. Khil EK, Choi JA, Hwang E, Sidek S, Choi I
    BMC Musculoskelet Disord, 2020 Jun 26;21(1):403.
    PMID: 32590960 DOI: 10.1186/s12891-020-03432-w
    BACKGROUND: To evaluate paraspinal back muscles of asymptomatic subjects using qualitative and quantitative analysis on CT and MRI and correlate the results with demographic data.

    METHODS: Twenty-nine asymptomatic subjects were enrolled prospectively (age: mean 34.31, range 23-50; 14 men, 15 women) from August 2016 to April 2017. Qualitative analysis of muscles was done using Goutallier's system on CT and MRI. Quantitative analysis entailed cross sectional area (CSA) on CT and MRI, Hounsfield unit (HU) on CT, fat fraction using two-point Dixon technique on MRI. Three readers independently analyzed the images; intra- and inter-observer agreements were measured. Linear regression and Spearman's analyses were used for correlation with demographic data.

    RESULTS: CSA values were significantly higher in men (p 

    Matched MeSH terms: Muscular Atrophy/diagnosis*; Muscular Atrophy/pathology; Muscular Atrophy/physiopathology
  13. Sasongko, Teguh Haryo, Zilfalil Alwi
    MyJurnal
    Spinal muscular atrophy (SMA), a leading genetic cause of death in childhood, is caused by deletion of the SMN1 gene, located at chromosome 5q13. The molecular pathogenesis, which results in motor neuron degeneration within the anterior horn of spinal cord, is a focus of debate among scientists. The unique nature of the duplicative 5q chromosomal region provides considerable yet challenging opportunity for disease correction as well as complication in performing molecular diagnosis and understanding the molecular pathogenesis. This article reviewed recent findings in the molecular pathogenesis of SMA as well as the research advances in the molecular diagnosis and therapeutic approaches.
    Matched MeSH terms: Muscular Atrophy, Spinal
  14. Chong LC, Gandhi G, Lee JM, Yeo WWY, Choi SB
    Int J Mol Sci, 2021 Aug 20;22(16).
    PMID: 34445667 DOI: 10.3390/ijms22168962
    Spinal muscular atrophy (SMA), one of the leading inherited causes of child mortality, is a rare neuromuscular disease arising from loss-of-function mutations of the survival motor neuron 1 (SMN1) gene, which encodes the SMN protein. When lacking the SMN protein in neurons, patients suffer from muscle weakness and atrophy, and in the severe cases, respiratory failure and death. Several therapeutic approaches show promise with human testing and three medications have been approved by the U.S. Food and Drug Administration (FDA) to date. Despite the shown promise of these approved therapies, there are some crucial limitations, one of the most important being the cost. The FDA-approved drugs are high-priced and are shortlisted among the most expensive treatments in the world. The price is still far beyond affordable and may serve as a burden for patients. The blooming of the biomedical data and advancement of computational approaches have opened new possibilities for SMA therapeutic development. This article highlights the present status of computationally aided approaches, including in silico drug repurposing, network driven drug discovery as well as artificial intelligence (AI)-assisted drug discovery, and discusses the future prospects.
    Matched MeSH terms: Muscular Atrophy, Spinal/drug therapy*; Muscular Atrophy, Spinal/metabolism*; Muscular Atrophy, Spinal/physiopathology*
  15. Hanafiah M, Johari B, Ab Mumin N, Musa AA, Hanafiah H
    Br J Radiol, 2022 May 01;95(1133):20210857.
    PMID: 35007174 DOI: 10.1259/bjr.20210857
    OBJECTIVE: Primary open-angle glaucoma (POAG) is a degenerative optic neuropathy disease which has somewhat similar pathophysiology to Alzheimer's disease (AD). This study aims to determine the presence of medial temporal atrophy and parietal lobe atrophy in patients with POAG compared to normal controls using medial temporal atrophy (MTA) scoring and posterior cortical atrophy (PCA) scoring system on T1 magnetization-prepared rapid gradient-echo.

    METHODS: 50 POAG patients and 50 normal subjects were recruited and an MRI brain with T1-magnetization-prepared rapid gradient-echo was performed. Medial temporal lobe and parietal lobe atrophy were by MTA and PCA/Koedam scoring. The score of the PCA and MTA were compared between the POAG group and the controls.

    RESULTS: There was a significant statistical difference between PCA score in POAG and the healthy control group (p-value = 0.026). There is no statistical difference between MTA score in POAG compared to the healthy control group (p-value = 0.58).

    CONCLUSION: This study suggests a correlation between POAG and PCA score. Potential application of this scoring method in clinical diagnosis and monitoring of POAG patients.

    ADVANCES IN KNOWLEDGE: The scoring method used in AD may also be applied in the diagnosis and monitoring of POAGMRI brain, specifically rapid volumetric T1 spoiled gradient echo sequence, may be applied in POAG assessment.

    Matched MeSH terms: Atrophy
  16. Sasongko TH, Gunadi, Zilfalil BA, Zabidi-Hussin Z
    J. Neurogenet., 2011 Mar;25(1-2):15-6.
    PMID: 21338334 DOI: 10.3109/01677063.2011.559561
    The authors suggest a simplification for the current molecular genetic testing of spinal muscular atrophy (SMA). Deletion analysis of SMN1 exon 7 alone may be necessary and sufficient for the diagnosis of SMA. It is based on sole contribution of survival motor neuron 1 (SMN1) exon 7 to SMA pathogenesis.
    Matched MeSH terms: Muscular Atrophy, Spinal/diagnosis*; Muscular Atrophy, Spinal/genetics*
  17. Siwi K, Tejosukmono A, Anggorowati N, Arfian N, Yunus J
    Med J Malaysia, 2024 Aug;79(Suppl 4):23-30.
    PMID: 39215411
    INTRODUCTION: Muscle health in diabetes mellitus (DM) is often neglected, which leads to muscle wasting. Increased reactive oxygen species in DM could decrease antioxidant enzymes such as superoxide dismutase-1 (SOD-1) and -2 (SOD-2) and inhibit calcineurin (CN) and PGC-1α signalling pathways. Chlorogenic acid (CGA) is known as a potent antioxidant and activators of CN and PGC-1α. This study aimed to determine the effect of CGA on mRNA expressions of SOD-1, SOD-2, CN and PGC-1α in inhibiting the progression of DM to muscle wasting.

    MATERIALS AND METHODS: This study was conducted at Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada starting on July 20th, 2020. A total of 24 male Wistar rats were randomly divided into six groups (four rats per group), i.e., control, DM 1.5 months (DM1.5), and DM 2 months (DM2); and DM groups treated with CGA in three different doses, namely CGA1 (12.5 mg/kg BW), CGA2 (25 mg/kg BW), and CGA3 (50 mg/kg BW). Control group was only injected with normal saline, while diabetic model was induced by intraperitoneal injection of streptozotocin. Blood glucose levels were measured twice (one week after diabetic induction and before termination). The soleus muscle tissue was harvested to analyse the mRNA expressions of SOD-1, SOD- 2, CN and PGC-1α using RT-PCR. In addition, the tissue samples were stained with immunohistochemistry for CN and haematoxylin-eosin (HE) for morphologic analysis under light microscopy.

    RESULTS: The mRNA expressions of SOD-1 and SOD-2 in the CGA1 group were relatively higher compared to the DM2 groups. The mRNA expression of CN in the CGA1 group was significantly higher compared to the DM2 group (p = 0.008). The mRNA expression of PGC-1α in the CGA1 group was significantly higher compared to the DM2 group (p = 0.025). Immunohistochemical staining showed that CNimmunopositive expression in the CGA1 group was more evident compared to the other groups. Haematoxylin-eosin staining showed that muscle tissue morphology in the CGA1 group was similar to that in the control group.

    CONCLUSION: Chlorogenic acid at a dose of 12.5 mg/kg BW shows lower blood glucose level, good skeletal muscle tissue morphology and higher mRNA expressions of SOD-1, SOD-2, CN and PGC-1α compared to the DM groups.

    Matched MeSH terms: Muscular Atrophy/drug therapy; Muscular Atrophy/metabolism
  18. Watihayati MS, Fatemeh H, Marini M, Atif AB, Zahiruddin WM, Sasongko TH, et al.
    Brain Dev, 2009 Jan;31(1):42-5.
    PMID: 18842367 DOI: 10.1016/j.braindev.2008.08.012
    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. The SMN2 gene is highly homologous to SMN1 and has been reported to be correlated with severity of the disease. The clinical presentation of SMA varies from severe to mild, with three clinical subtypes (type I, type II, and type III) that are assigned according to age of onset and severity of the disease. Here, we aim to investigate the potential association between the number of copies of SMN2 and the deletion in the NAIP gene with the clinical severity of SMA in patients of Malaysian origin. Forty-two SMA patients (14 of type I, 20 type II, and 8 type III) carrying deletions of the SMN1 gene were enrolled in this study. SMN2 copy number was determined by fluorescence-based quantitative polymerase chain reaction assay. Twenty-nine percent of type I patients carried one copy of SMN2, while the remaining 71% carried two copies. Among the type II and type III SMA patients, 29% of cases carried two copies of the gene, while 71% carried three or four copies of SMN2. Deletion analysis of NAIP showed that 50% of type I SMA patients had a homozygous deletion of exon 5 of this gene and that only 10% of type II SMA cases carried a homozygous deletion, while all type III patients carried intact copies of the NAIP gene. We conclude that there exists a close relationship between SMN2 copy number and SMA disease severity, suggesting that the determination of SMN2 copy number may be a good predictor of SMA disease type. Furthermore, NAIP gene deletion was found to be associated with SMA severity. In conclusion, combining the analysis of deletion of NAIP with the assessment of SMN2 copy number increases the value of this tool in predicting the severity of SMA.
    Matched MeSH terms: Muscular Atrophy, Spinal/classification; Muscular Atrophy, Spinal/diagnosis; Muscular Atrophy, Spinal/genetics*
  19. Altan E, Nayman A, Yildirim A, Ozbaydar MU, Ciftci S, Karahan M
    Malays Orthop J, 2020 Jul;14(2):23-27.
    PMID: 32983374 DOI: 10.5704/MOJ.2007.007
    Introduction: Many factors could affect the supraspinatus (SSP) muscle after tendon rupture. We aimed to determine how infraspinatus and subscapularis tendon problems affect supraspinatus muscle atrophy associated with tears, in a retrospective cohort study conducted in a tertiary-level centre.

    Material and Methods: Fifty-eight patients with a full-thickness SSP tendon tear who fulfilled the inclusion criteria were enrolled in the study. They were evaluated for tear retraction, fatty degeneration, and other rotator cuff tendon pathologies. Supraspinatus muscle was assessed using the Goutallier classification, and its average area was also measured. Accompanying lesions of the subscapularis and infraspinatus tendons and degree of supraspinatus muscle atrophy were evaluated using magnetic resonance imaging.

    Results: Our results showed that supraspinatus tendon tears ranged between 3mm and 41mm, and the estimated average cross-sectional area of the SSP muscle was 247.6mm2. Any degree of infraspinatus tendon pathology, ranging from tendinosis to full-thickness tears, was significantly correlated with the SSP muscle area (P < 0.05). The subscapularis tendon pathologies did not show a similar correlation. The interobserver and intraobserver reliabilities of the measurements were graded as excellent.

    Conclusion: Impairment of any of the rotator cuff muscles may affect the other muscles inversely. Our study showed that all infraspinatus tendon pathologies and partial subscapularis tears affect and alter the SSP muscle belly. We suggest early intervention for supraspinatus tears to avoid further fatty degeneration, as muscle atrophy and fatty degeneration progress in combination with the accompanying lesions.

    Matched MeSH terms: Muscular Atrophy
  20. Wynn, Aye Aye, Myint, Ohnmar, Mya, Nang Khin
    MyJurnal
    Apoptosis is a programmed cell death which occurs following a variety of stimuli. Physiologically the process is important for morphogenesis of organs and homeostasis of different types of cells. Apoptotic cell death is responsible for a variety of pathologic states such as elimination of cell death in mutated cells, infected cells, tumour cells and transplant rejection well as the pathological atrophy. In this review, there is discussion about the control of apoptosis, detection methods of apoptosis, its association with infectious and non-communicable diseases. Intracellular microorganisms survive through inhibition of host cell apoptosis as well as they destroy the parenchymal cells causing impaired functions. It plays important role in tumourigenesis. There are possible therapeutic roles of drugs that modify apoptosis in human diseases.
    Matched MeSH terms: Atrophy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links