Extruded plant proteins, also known as textured vegetable proteins (TVPs), serve as vital components in plant-based meat analogue, yet their structural and nutritional characteristics remain elusive. In this study, we examined the impact of high-moisture (HM) and low-moisture (LM) extrusion on the structures, digestion and absorption of three types of plant proteins. Extrusion transformed plant proteins from spherical to fibrous forms, and formed larger aggregate particles. It also led to the disruption of original disulfide bonds and hydrophobic interactions within protein molecules, and the formation of new cross-links. Intriguingly, compared to native plant proteins, TVPs' α-helix/β-sheet values decreased from 0.68 to 0.69 to 0.56-0.65. Extrusion increased the proportion of peptides shorter than 1 kD in digesta of TVPs by 1.44-23.63%. In comparison to unextruded plant proteins, TVPs exhibited lower content of free amino acids in cell transport products. Our findings demonstrated that extrusion can modify protein secondary structure by diminishing the α-helix/β-sheet value, and impact protein tertiary structure by reducing disulfide bonds and hydrophobic interactions, promoting the digestion and absorption of plant proteins. These insights offer valuable scientific backing for the utilization of extruded plant-based proteins, bolstering their role in enhancing the palatability and nutritional profile of plant-based meat substitutes.
Increasing protein demands directly require additional resources to those presently and recurrently available. Emerging green technologies have witnessed an escalating interest in "Cavitation Processing" (CP) to ensure a non-invasive, non-ionizing and non-polluting extraction. The main intent of this review is to present an integrated summary of cavitation extraction methods specifically applied to food protein sources. Along with a comparative assessment carried out for each type of cavitation model, protein extraction yield and implications on the extracted protein's structural and functional properties. The basic principle of cavitation is due to the pressure shift in the liquid flow within milliseconds. Hence, cavitation emerges similar to boiling; however, unlike boiling (temperature change), cavitation occurs due to pressure change. Characterization and classification of sample type is also a prime candidate when considering the applications of cavitation models in food processing. Generally, acoustic and hydrodynamic cavitation is applied in food applications including extraction, brewing, microbial cell disruption, dairy processing, emulsification, fermentation, waste processing, crystallisation, mass transfer and production of bioactive peptides. Micro structural studies indicate that shear stress causes disintegration of hydrogen bonds and Van der Waals interactions result in the unfolding of the protein's secondary and/or tertiary structures. A change in the structure is not targeted but rather holistic and affects the physicochemical, functional, and nutritional properties. Cavitation assisted extraction of protein is typically studied at a laboratory scale. This highlights limitations against the application at an industrial scale to obtain potential commercial gains.
Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.
Biodegradable films composed of starch and chitosan plasticized by palm oil were fabricated via a solvent casting technique. In this study, the influence of the ratio of brown rice starch and chitosan on the mechanical, thermal, antimicrobial, and morphological properties of the films was investigated. Antimicrobial films with a smooth surface and a compact structure of brown rice starch were obtained. The results showed that a higher proportion of chitosan in the polymer blends resulted in a substantial enhancement in the tensile strength (TS) and thermal stability of the film. The TS values for BRS100, BRS30CH70, BRS50CH50, BRS70CH30, and CH100 were 3.7, 15.2, 10.2, 9.3, and 8.8 MPa, respectively, and the elongation at break (EB) values of the BRS100, BRS30CH70, BRS50CH50, BRS70CH30, and CH100 samples were 39.5%, 34.7%, 7.3%, 11.5%, and 6.9%, respectively. The addition of chitosan to the brown rice starch samples resulted in a reduced water uptake of the film. The film with a balanced ratio of brown rice starch and chitosan exhibited excellent water resistance, with its water absorption being the lowest among all of the studied compositions.
Tualang, Gelam and Kelulut honeys are tropical rainforest honeys reported to have various medicinal properties. Studies related to the medicinal properties and physicochemical characteristics of these honeys are growing extensively and receiving increased attention. This review incorporated and analysed the findings on the biological and physicochemical properties of these honeys. Tualang, Gelam and Kelulut honeys were found to possess a wide variety of biological effects attributed to their physicochemical characteristics. Findings revealed that these honeys have anti-diabetic, anti-obesity, anti-cancer, anti-oxidative, anti-microbial, anti-inflammatory and wound-healing properties and effects on the cardiovascular system, nervous system and reproductive system. The physicochemical properties of these honeys were compared and discussed and results showed that they have high-quality contents and excellent antioxidant sources.
The physicochemical properties of κ-carrageenan films extracted from Eucheuma cottonii (E. cottonii) incorporated with different concentrations and types of plasticizers were studied. Glycerol, sorbitol, and polyethylene glycol-300 (PEG-300) in the range of 10-60% were used as plasticizers. The results showed that the thickness and moisture content (MC) of films increased significantly (p≤0.05) with the increase in plasticizer concentration. Sorbitol-plasticized films had the lowest values. Sorbitol-plasticized films have better mechanical properties and the lowest water vapor permeability (WVP), solubility and water uptake ratio (WUR) compared with glycerol and PEG-plasticized films (p≤0.05). Fourier transform infrared (FTIR) spectra showed the intermolecular reactions between κ-carrageenan and the plasticizers in the films. Scanning electron microscopy (SEM) observations indicated that sorbitol-plasticized films have a compact structure, even at the highest concentration. The melting temperature (Tm) of films decreased (p≤0.05) with an increase in the plasticizer concentration. Here, the glycerol-plasticized films had the lowest values. X-ray diffraction (XRD) showed broad and narrow peaks of the un-plasticized κ-carrageenan film at 2θ=20.0° and 2θ=8.4°, respectively. The intensity of the broad peak increased and the narrow peak disappeared as the concentration of plasticizers increased. In conclusion, films from E. cottonii successfully produced with sorbitol as the plasticizer exhibited good physical properties as packaging films.
Red palm olein is known to be high in carotenes and vitamin E (tocols) and possess various nutritional benefits. This study evaluates the effect of prolonged heating using three common cooking techniques i.e. deep-fat fryer, microwave oven and conventional oven, on the profiles of carotenes and tocols as well as the physico-chemical changes occurring in red palm olein when compared to conventional palm olein. Physico-chemical changes in all oils were gauged based on their peroxide, p-anisidine and total oxidation values, acidity, and fatty acid composition. Both red palm olein and palm olein were thermally stable based on their lower rate of hydrolytic and oxidative degradations as well as higher tocols retention, which allow the oils to undergo heating up to 3 hours using deep-fat fryer and conventional oven. Nevertheless, red palm olein seemed not suitable for prolonged heating processes considering lower retention of carotenes. Microwave heating also influenced the stability of phytonutrients.
Dental composite resins are widely used in dental practice and are continually being developed in order to obtain better products. To gain full benefit from these materials, it is important for the clinician to understand their properties. The following is a review of the more common characteristics of composites in current use.
In this paper, the syntheses of kojic acid esters via chemical and enzymatic methods are
reviewed. The advantages and disadvantages of chemical process in term of process, safety and
efficiency are discussed. In enzymatic process, the significant process parameters related to the
synthesis of kojic acid esters such as the lipases, solvent, temperature and water content are
highlighted. Possible enzymatic synthesis using solvent and solvent-free system taking into
consideration of the difference in these systems involving cost, lipase reusability and efficiency
is comparatively reviewed. The possible approach for large scale production using various
enzyme reactor designs is also discussed and re-evaluated.
Global demand for epoxidized vegetable oil has been steadily growing. Epoxidized vegetable oils are typically produced using a two-pot synthesis process in which the oxidation and epoxidation reactions are carried out sequentially. This two-pot synthesis method, however, has a major drawback in industrialscale production, particularly when it comes to operational and process safety issues. A laboratory-scale one-pot synthesis method was attempted in this study with the aim to safely synthesize epoxidized Moringa Oleifera oil (eMOo) by avoiding the occurrence of undesired exothermic runaway reaction. The oil extracted from Moringa Oleifera oil seed kernel (MOo) was used as a starting component due to its high degree of unsaturation and also because the Moringa Oleifera plant can be freely grown in any soil conditions. Two parallel oxidation and epoxidation reactions were carried out simultaneously in this one-pot synthesis method to produce eMOo. The effect of five different mole ratios of MOo, acetic acid and hydrogen peroxide (1:1:1, 1:1:2, 1:1.5:2, 1:1.75:2 and 1:2:2, respectively) on reaction mechanism was investigated at the controlled temperature range of 43 - 55°C and reaction time of 0 - 120 min. The physicochemical properties of MOo as well as the oxirane oxygen content (OOC) of the resulting eMOo were characterized. In addition, GC-MS and FTIR analysis were performed to verify the molecular composition of MOo and also to identify the epoxy group of the resulting eMOo respectively. Among the five different mole ratios studied, the 1:1.5:2 mole ratio has the highest unsaturation conversion of 79.57% and OOC of 4.12%.
Rice and quinoa starches are modified with short-chain fatty acids (SCFA) with different SCFA acyl chain lengths and levels of modification. This work is aimed to investigate the impact of modifying rice and quinoa starches with short-chain fatty acids (SCFAs) on various physicochemical properties, including particle size, protein and amylose content, thermal behavior, pasting characteristics, and in vitro digestibility. Both native and SCFA-starches showed comparable particle sizes, with rice starches ranging from 1.58 to 2.22 μm and quinoa starches from 5.18 to 5.72 μm. SCFA modification led to lower protein content in both rice (0.218-0.255 %) and quinoa starches (0.537-0.619 %) compared to their native counterparts. Esterification led to the reduction of gelatinization and pasting temperatures as well as the hardness of the paste of SCFA-starches were reduced while paste clarity increased. The highest level of modification in SCFA-starch was associated with the highest amount of resistant starch fraction. Principal component analysis revealed that modification levels exerted a greater influence on starch properties than the types of SCFA used (acetyl, propionyl, and butyryl). These findings is importance in considering the degree of substitution or level of modification when tailoring starch properties through SCFA modification, with implications for various applications in food applications.
A crosslinked chitosan-glyoxal/TiO2 nanocomposite (CCG/TNC) was synthesized by loading different ratios of TiO2 nanoparticles into polymeric matrix of crosslinked chitosan-glyoxal (CCG) to be a promising biosorbent for methyl orange (MO). Box-Behnken design (BBD) in response surface methodology (RSM) was applied to optimize various process parameters, viz., loading of TiO2 nanoparticles into CCG polymeric matrix (A: 0%-50%), adsorbent dose (B: 0.04-0.14 g/50 mL), solution pH (C: 4-10), and temperature (D: 30-50 °C). The highest MO removal efficiency of 75.9% was observed by simultaneous interactions between AB, AC, and BC. The optimum TiO2 loading, adsorbent dosage, solution pH, and temperature were (50% TiO2: 50% chitosan labeled as CCG/TNC-50), 0.09 g/50 mL, 4.0, and 40 °C. The adsorption of MO from aqueous solution by using CCG/TNC-50 in batch mode was evaluated. The kinetic results were well described by the pseudo-first order kinetic, and the equilibrium data were in agreement with Langmuir isotherm model with maximum adsorption capacity of 416.1 mg/g. The adsorption mechanism included electrostatic attractions, n-π stacking interactions, dipole-dipole hydrogen bonding interactions, and Yoshida H-bonding.
In this paper, a support vector regression (SVR) using radial basis function (RBF) kernel is proposed using an integrated
parallel linear-and-nonlinear model framework for empirical modeling of nonlinear chemical process systems. Utilizing
linear orthonormal basis filters (OBF) model to represent the linear structure, the developed empirical parallel model
is tested for its performance under open-loop conditions in a nonlinear continuous stirred-tank reactor simulation case
study as well as a highly nonlinear cascaded tank benchmark system. A comparative study between SVR and the parallel
OBF-SVR models is then investigated. The results showed that the proposed parallel OBF-SVR model retained the same
modelling efficiency as that of the SVR, whilst enhancing the generalization properties to out-of-sample data.
The use of essential oils as natural antioxidant, antimicrobial and insect repellent agent was limited by the loss of bioactive components especially volatile compounds. This study aimed to improve biological properties of curry leaf essential oil (CLEO) by producing nanometer sized particles through two different synthesis techniques; nanoencapsulation and nanoprecipitation. The methods produced different nanostructures; nanocapsules and nanospheres distinguished by the morphological structure (TEM analysis). Successful loading of CLEO into chitosan nanocarrier was proven by FTIR spectra. Zeta potential values for both nanostructures were more than +30 mV implying their stability against aggregation. CLEO loaded nanocapsules exhibited highest antibacterial properties against Gram-positive bacteria compared to nanospheres. Meanwhile, CLEO loaded nanospheres recorded up until 90.44 % DPPH radical scavenging properties, higher compared to nanocapsules. Both nanostructures demonstrated further improvement in antioxidant and antibacterial activities with the incorporation of higher chitosan concentration. In vitro release analysis indicated that CLEO undergo two-stage discharge mechanism where fast discharge occurred up until 12 h followed by sustained released afterwards. The two synthesis methods applied synergistically with greater chitosan concentration successfully produced nanostructures with >60 % encapsulation efficiency (EE). This concluded that both techniques were reliable to protect the bioactive constituents of CLEO for further used.
This study investigated the influence of chitosan (CH) and hydroxypropyl methylcellulose (H), along with ultrasound power, on the physicochemical properties, antifungal activity, and stability of oil-in-water (O/W) nanoemulsions containing thymol and cinnamaldehyde in a 7:3 (v/v) ratio. Eight O/W formulations were prepared using CH, H, and a 1:1 (v/v) blend of CH and H, both with and without ultrasonication (U). Compared to untreated samples, U-treated nanoemulsions had lower droplet sizes (433-301 nm), polydispersity index (0.42-0.47), and zeta potential (-0.42-0.77 mV). The U treatment decreased L* and b* values, increased a* color attribute values, and increased apparent viscosity (0.26-2.17) at the same shear rate. After 28 days, microbiological testing of nanoemulsions treated with U showed counts below the detection limits (< 2 log CFU mL-1). The U-treated nanoemulsions exhibited stronger antifungal effects against R. stolonifer, with the NE/CH-U and NE/CH-H-U formulations demonstrating the lowest minimum inhibitory and fungicidal concentrations, measured at 0.12 and 0.24 μL/mL, respectively. On day 28, U-treated nanoemulsions demonstrated higher ionic, thermal, and physical stability than untreated samples. These findings suggest that the stability and antifungal efficacy of polysaccharide-based nanoemulsions may be improved by ultrasonic treatment. This study paves the way for innovative, highly stable nanoemulsions.
Large amount of sodium hydroxide (NaOH) is consumed to remove the protein content in chitin biomass during deproteinization. However, excessive NaOH concentration used might lead to the reduction of cost effectiveness during chitin extraction. Hence, the present study aimed to extract and evaluate the physicochemical properties of chitin and chitosan isolated from superworm (Zophobas morio) larvae using 0.5M-2.0M of NaOH. The extracted chitin and chitosan were subjected to Fourier Transform Infrared Spectroscopy (FT-IR), elemental analysis, Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). The 0.5M NaOH treatment resulted in the highest yield of chitin (5.43%), but produced the lowest yield (65.84%) of chitosan. The extracted chitin samples had relatively high degree of acetylation (DA) (82.39%-101.39%). Both chitin and chitosan showed smooth surface with tiny pores. The extracted chitin samples were confirmed as α-chitin based on the FT-IR and TGA. The chitin samples were amorphous with low degree of crystallinity. From TGA, the Chitosan 3 extracted was partially deacetylated. Both DPPH radical scavenging and ferric-chelating assay showed positive correlation with DD of chitosan isolates. However, the chitosan isolates were not fully dissolved, resulting in lower radical scavenging and ferric-chelating ability compared to commercial chitosan.
The aim of this study was to develop formulations to produce lycopene nanodispersions and to investigate the effects of the homogenization pressure on the physicochemical properties of the lycopene nanodispersion. The samples were prepared by using emulsification-evaporation technique. The best formulation was achieved by dispersing an organic phase (0.3% w/v lycopene dissolved in dichloromethane) in an aqueous phase (0.3% w/v Tween 20 dissolved in deionized water) at a ratio of 1:9 by using homogenization process. The increased level of homogenization pressure to 500bar reduced the particle size and lycopene concentration significantly (p<0.05). Excessive homogenization pressure (700-900bar) resulted in large particle sizes with high dispersibility. The zeta potential and turbidity of the lycopene nanodispersion were significantly influenced by the homogenization pressure. The results from this study provided useful information for producing small-sized lycopene nanodispersions with a narrow PDI and good stability for application in beverage products.
Fibrinogen is one of the key proteins that participate in the protein corona composition of many types of nanoparticles (NPs), and its conformational changes are crucial for activation of immune systems. Recently, we demonstrated that the fibrinogen highly contributed in the protein corona composition at the surface of zeolite nanoparticles. Therefore, understanding the interaction of fibrinogen with zeolite nanoparticles in more details could shed light of their safe applications in medicine. Thus, we probed the molecular interactions between fibrinogen and zeolite nanoparticles using both experimental and simulation approaches. The results indicated that fibrinogen has a strong and thermodynamically favorable interaction with zeolite nanoparticles in a non-cooperative manner. Additionally, fibrinogen experienced a substantial conformational change in the presence of zeolite nanoparticles through a concentration-dependent manner. Simulation results showed that both E- and D-domain of fibrinogen are bound to the EMT zeolite NPs via strong electrostatic interactions, and undergo structural changes leading to exposing normally buried sequences. D-domain has more contribution in this interaction and the C-terminus of γ chain (γ377-394), located in D-domain, showed the highest level of exposure compared to other sequences/residues.
Stingless bee honey produced by Heterotrigona itama from different botanical origins was characterised and discriminated. Three types of stingless bee honey collected from acacia, gelam, and starfruit nectars were analyzed and compared with Apis mellifera honey. The results showed that stingless bee honey samples from the three different botanical origins were significantly different in terms of their moisture content, pH, free acidity, total soluble solids, colour characteristics, sugar content, amino acid content and antioxidant properties. Stingless bee honey was significantly different from Apis mellifera honey in terms of physicochemical and antioxidant properties. The amino acid content was further used in the chemometrics analysis to evaluate the role of amino acid in discriminating honey according to botanical origin. Partial least squares-discriminant analysis (PLS-DA) revealed that the stingless bee honey was completely distinguishable from Apis mellifera honey. Notably, a clear distinction between the stingless bee honey types was also observed. The specific amino acids involved in the distinction of honey were cysteine for acacia and gelam, phenylalanine and 3-hydroxyproline for starfruit, and proline for Apis mellifera honey. The results showed that all honey samples were successfully classified based on amino acid content.
A quantitative structure-human intestinal absorption relationship was developed using artificial neural network (ANN) modeling. A set of 86 drug compounds and their experimentally-derived intestinal absorption values used in this study was gathered from the literature and a total of 57 global molecular descriptors, including constitutional, topological, chemical, geometrical and quantum chemical descriptors, calculated for each compound. A supervised network with radial basis transfer function was used to correlate calculated molecular descriptors with experimentally-derived measures of human intestinal absorption. A genetic algorithm was then used to select important molecular descriptors. Intestinal absorption values (IA%) were used as the ANN's output and calculated molecular descriptors as the inputs. The best genetic neural network (GNN) model with 15 input descriptors was chosen, and the significance of the selected descriptors for intestinal absorption examined. Results obtained with the model that was developed indicate that lipophilicity, conformational stability and inter-molecular interactions (polarity, and hydrogen bonding) have the largest impact on intestinal absorption.