Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Zamanian M, Veerakumarasivam A, Abdullah S, Rosli R
    Pathol Oncol Res, 2013 Apr;19(2):149-54.
    PMID: 23392843 DOI: 10.1007/s12253-012-9600-2
    Calreticulin (CRT) as a multi-functional endoplasmic reticulum protein is involved in a spectrum of cellular processes which ranges from calcium homeostasis and chaperoning to cell adhesion and finally malignant formation and progression. Previous studies have shown a contributing role for CRT in a range of different cancers. This present review will focus on the possible roles of CRT in the progression of malignant proliferation and the mechanisms involved in its contribution to cancer invasion.
    Matched MeSH terms: Endoplasmic Reticulum/metabolism; Endoplasmic Reticulum/pathology
  2. Yeap JW, Ali IAH, Ibrahim B, Tan ML
    Pulm Pharmacol Ther, 2023 Aug;81:102218.
    PMID: 37201652 DOI: 10.1016/j.pupt.2023.102218
    COPD pathogenesis is frequently associated with endoplasmic reticulum stress (ER stress) progression. Targeting the major unfolded protein response (UPR) branches in the ER stress pathway may provide pharmacotherapeutic selection strategies for treating COPD and enable relief from its symptoms. In this study, we aimed to systematically review the potential role of the ER stress inhibitors of major UPR branches (IRE1, PERK, and ATF6) in COPD-related studies and determine the current stage of knowledge in this field. The systematic review was carried out adhering to the PRISMA checklist based on published studies obtained from specific keyword searches of three databases, namely PubMed, ScienceDirect and Springer Database. The search was limited to the year 2000-2022 which includes all in vitro studies, in vivo studies and clinical trials related to the application of ER stress inhibitors toward COPD-induced models and disease. The risk of bias was evaluated using the QUIN, SYRCLE, revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and NIH tool respectively. A total of 7828 articles were screened from three databases and a final total of 37 studies were included in the review. The ER stress and UPR pathways are potentially useful to prevent COPD progression and attenuate the exacerbation of COPD and related symptoms. Interestingly, the off-target effects from inhibition of the UPR pathway may be desirable or undesirable depending on context and therapeutic applications. Targeting the UPR pathway could have complex consequences as the production of ER molecules involved in folding may be impaired which could continuously provoke misfolding of proteins. Although several emerging compounds were noted to be potentially useful for targeted therapy against COPD, clinical studies have yet to be thoroughly explored.
    Matched MeSH terms: Endoplasmic Reticulum Stress/physiology
  3. Mustapha S, Mohammed M, Azemi AK, Yunusa I, Shehu A, Mustapha L, et al.
    Oxid Med Cell Longev, 2021;2021:8830880.
    PMID: 33995826 DOI: 10.1155/2021/8830880
    The role of the endoplasmic reticulum (ER) has evolved from protein synthesis, processing, and other secretory pathways to forming a foundation for lipid biosynthesis and other metabolic functions. Maintaining ER homeostasis is essential for normal cellular function and survival. An imbalance in the ER implied stressful conditions such as metabolic distress, which activates a protective process called unfolded protein response (UPR). This response is activated through some canonical branches of ER stress, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). Therefore, chronic hyperglycemia, hyperinsulinemia, increased proinflammatory cytokines, and free fatty acids (FFAs) found in diabesity (a pathophysiological link between obesity and diabetes) could lead to ER stress. However, limited data exist regarding ER stress and its association with diabesity, particularly the implicated proteins and molecular mechanisms. Thus, this review highlights the role of ER stress in relation to some proteins involved in diabesity pathogenesis and provides insight into possible pathways that could serve as novel targets for therapeutic intervention.
    Matched MeSH terms: Endoplasmic Reticulum Stress/physiology*
  4. Mohd Ropidi MI, Khazali AS, Nor Rashid N, Yusof R
    J Biomed Sci, 2020 Jan 20;27(1):27.
    PMID: 31959174 DOI: 10.1186/s12929-020-0618-6
    Zika virus (ZIKV) belongs to the Flavivirus genus of the Flaviviridae family. It is an arbovirus that can cause congenital abnormalities and is sexually transmissible. A series of outbreaks accompanied by unexpected severe clinical complications have captured medical attention to further characterize the clinical features of congenital ZIKV syndrome and its underlying pathophysiological mechanisms. Endoplasmic reticulum (ER) and ER-related proteins are essential in ZIKV genome replication. This review highlights the subcellular localization of ZIKV to the ER and ZIKV modulation on the architecture of the ER. This review also discusses ZIKV interaction with ER proteins such as signal peptidase complex subunit 1 (SPCS1), ER membrane complex (EMC) subunits, and ER translocon for viral replication. Furthermore, the review covers several important resulting effects of ZIKV infection to the ER and cellular processes including ER stress, reticulophagy, and paraptosis-like death. Pharmacological targeting of ZIKV-affected ER-resident proteins and ER-associated components demonstrate promising signs of combating ZIKV infection and rescuing host organisms from severe neurologic sequelae.
    Matched MeSH terms: Endoplasmic Reticulum/virology*; Endoplasmic Reticulum Stress/physiology*
  5. Canning EU, Sinden RE, Landau I, Miltgen F
    Ann Parasitol Hum Comp, 1976 11 1;51(6):607-23.
    PMID: 829210
    An immature merocyst of Hepatocystis malayensis and gametocytes of H. brayi were studied with the electron microscope. The merocyst consisted of a highly complex cytoplasmic reticulum ramifying through an amorphous matrix: the entire complex was enclosed by a simple unit membrane. The host cell was apparently destroyed completely during growth of the cyst. Immature gametocytes were highly amoeboid and showed extensive vacuolisation or attenuation of the cytoplasm. The nucleus contained one or two prominent nucleoli. Mature gametocytes had compact cytoplasm and contained pyriform osmiophilic bodies which were believed to function in the release of the parasites from the host cells. Macrogametocytes were distinguished from microgametocytes by cytoplasmic differences in numbers of ribosomes, and cristate mitochondria and in the extent of development of the smooth endoplasmic reticulum. The compact nuclei of the macrogametocytes had inconspicuous DNA but prominent nucleoli whereas those of the microgametocytes were irregular and showed a central aggregate of DNA. In microgametogenesis karyokinesis of the parent nucleus was delayed until axoneme formation was complete. Then the nuclear buds were extruded into emerging microgametes. At fertilisation the plasmalemmas of the two gametes fused and the single axoneme and nucleus of the microgamete moved into the cytoplasm of the macrogamete.
    Matched MeSH terms: Endoplasmic Reticulum/ultrastructure
  6. Choy KW, Murugan D, Mustafa MR
    Pharmacol Res, 2018 06;132:119-129.
    PMID: 29684674 DOI: 10.1016/j.phrs.2018.04.013
    Endoplasmic reticulum (ER) is the main organelle for the synthesis, folding, and processing of secretory and transmembrane proteins. Pathological stimuli including hypoxia, ischaemia, inflammation and oxidative stress interrupt the homeostatic function of ER, leading to accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers a complex signalling network referred as the unfolded protein response (UPR). Extensive studies have demonstrated that ER stress plays an important role in the pathogenesis of various cardiovascular diseases such as heart failure, ischemic heart disease and atherosclerosis. The importance of natural products in modern medicine are well recognized and continues to be of interests as a source of novel lead compounds. Natural products targeting components of UPR and reducing ER stress offers an innovative strategic approach to treat cardiovascular diseases. In this review, we discussed several therapeutic interventions using natural products with potential cardiovascular protective properties targeting ER stress signalling pathways.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  7. Kumarasingha R, Young ND, Yeo TC, Lim DSL, Tu CL, Palombo EA, et al.
    Parasit Vectors, 2019 Apr 25;12(1):181.
    PMID: 31023350 DOI: 10.1186/s13071-019-3429-4
    BACKGROUND: Natural compounds from plants are known to provide a source of anthelmintic molecules. In previous studies, we have shown that plant extracts from the plant Picria fel-terrae Lour. and particular fractions thereof have activity against the free-living nematode Caenorhabditis elegans, causing quite pronounced stress responses in this nematode. We have also shown that a fraction, designated Pf-fraction 5, derived from this plant has a substantial adverse effect on this worm; however, nothing is known about the molecular processes affected in the worm. In the present study, we explored this aspect.

    RESULTS: Key biological processes linked to upregulated genes (n = 214) included 'response to endoplasmic reticulum stress' and 'lipid metabolism', and processes representing downregulated genes (n = 357) included 'DNA-conformation change' and 'cellular lipid metabolism'.

    CONCLUSIONS: Exposure of C. elegans to Pf-fraction 5 induces significant changes in the transcriptome. Gene ontology analysis suggests that Pf-fraction 5 induces endoplasmic reticulum and mitochondrial stress, and the changes in gene expression are either a direct or indirect consequence of this. Further work is required to assess specific responses to sub-fractions of Pf-fraction 5 in time-course experiments in C. elegans, to define the chemical(s) with potent anthelmintic properties, to attempt to unravel their mode(s) of action and to assess their selectivity against nematodes.

    Matched MeSH terms: Endoplasmic Reticulum; Endoplasmic Reticulum Stress
  8. Ramli US, Baker DS, Quant PA, Harwood JL
    Biochem Soc Trans, 2002 Nov;30(Pt 6):1043-6.
    PMID: 12440968
    Control analysis is a powerful method to quantify the regulation of metabolic pathways. We have applied it to lipid biosynthesis for the first time by using model tissue culture systems from the important oil crops, olive ( Olea europaea L.) and oil palm ( Elaeis guineensis Jacq.). By the use of top-down control analysis, fatty acid biosynthesis has been shown to exert more control than lipid assembly under different experimental conditions. However, both parts of the lipid biosynthetic pathway are important, so that attempts to alter oil yield by manipulating the activity of a single enzyme step are very unlikely to produce significant increases.
    Matched MeSH terms: Endoplasmic Reticulum/metabolism
  9. Moidu NA, A Rahman NS, Syafruddin SE, Low TY, Mohtar MA
    Heliyon, 2020 Sep;6(9):e05000.
    PMID: 33005802 DOI: 10.1016/j.heliyon.2020.e05000
    Anterior gradient-2 (AGR2) protein mediates the formation, breakage and isomerization of disulphide bonds during protein maturation in the endoplasmic reticulum (ER) and contributes to the homoeostasis of the secretory pathway. AGR2 promotes tumour development and metastasis and its elevated expression is almost completely restricted to malignant tumours. Interestingly, this supposedly ER-resident protein can be localised to other compartments of cancer cells and can also be secreted into the extracellular milieu. There are emerging evidences that describe the gain-of-function activities of the extracellular AGR2, particularly in cancer development. Here, we reviewed studies detailing the expression, pathological and physiological roles associated with AGR2 and compared the duality of localization, intracellular and extracellular, with special emphasis on the later. We also discussed the possible mechanisms of AGR2 secretion as well as deliberating the functional impacts of AGR2 in cancer settings. Last, we deliberate the current therapeutic strategies and posit the potential use AGR2, as a prognosis and diagnosis marker in cancer.
    Matched MeSH terms: Endoplasmic Reticulum
  10. Delom F, Mohtar MA, Hupp T, Fessart D
    Am. J. Physiol., Cell Physiol., 2020 01 01;318(1):C40-C47.
    PMID: 31644305 DOI: 10.1152/ajpcell.00532.2018
    The anterior gradient-2 (AGR2) is an endoplasmic reticulum (ER)-resident protein belonging to the protein disulfide isomerase family that mediates the formation of disulfide bonds and assists the protein quality control in the ER. In addition to its role in proteostasis, extracellular AGR2 is responsible for various cellular effects in many types of cancer, including cell proliferation, survival, and metastasis. Various OMICs approaches have been used to identify AGR2 binding partners and to investigate the functions of AGR2 in the ER and outside the cell. Emerging data showed that AGR2 exists not only as monomer, but it can also form homodimeric structure and thus interact with different partners, yielding different biological outcomes. In this review, we summarize the AGR2 "interactome" and discuss the pathological and physiological role of such AGR2 interactions.
    Matched MeSH terms: Endoplasmic Reticulum/metabolism*; Endoplasmic Reticulum/pathology
  11. Patel S, Wald AI, Bastaki JM, Chiosea SI, Singhi AD, Seethala RR
    Head Neck Pathol, 2023 Jun;17(2):467-478.
    PMID: 36746884 DOI: 10.1007/s12105-023-01524-2
    BACKGROUND: Secretory myoepithelial carcinomas (SMCA) are rare, mucinous, signet ring predominant tumors with primitive myoepithelial features. While many mucinous salivary gland tumors have now been molecularly characterized, key drivers in SMCA have yet to be elucidated. Recently, NKX3.1, a homeodomain transcription factor implicated in salivary mucous acinar development was also shown in a subset of salivary mucinous neoplasms, salivary intraductal papillary mucinous neoplasms (SG-IPMN). To date, NKX3.1 expression has not been characterized in other mucinous salivary lesions. Here, we report molecular and extended immunophenotypic findings in SMCA and NKX3.1 expression in the context of other head and neck lesions.

    METHODS: We retrieved 4 previously reported SMCA, performed additional immunohistochemical and targeted next-generation sequencing (NGS). We also investigated the use of NKX3.1 as a marker for SMCA in the context of its prevalence and extent (using H-score) in a mixed cohort of retrospectively and prospectively tested head and neck lesions (n = 223) and non-neoplastic tissues (n = 66).

    RESULTS: NKX3.1 positivity was confirmed in normal mucous acini as well as in mucous acinar class of lesions (5/6, mean H-score: 136.7), including mucinous adenocarcinomas (3/4), SG-IPMN (1/1), and microsecretory adenocarcinoma (MSA) (1/1). All SMCA were positive. Fluorescence in situ hybridization for SS18 rearrangements were negative in all successfully tested cases (0/3). NGS was successful in two cases (cases 3 and 4). Case 3 demonstrated a PTEN c.655C>T p.Q219* mutation and a SEC16A::NOTCH1 fusion while case 4 (clinically aggressive) showed a PTEN c.1026+1G>A p.K342 splice site variant, aTP53 c.524G>A p.R175H mutation and a higher tumor mutation burden (29 per Mb). PTEN immunohistochemical loss was confirmed in both cases and a subset of tumor cells showed strong (extreme) staining for P53 in Case 4.

    CONCLUSION: Despite a partial myoepithelial phenotype, SMCA, along with mucinous adenocarcinomas/SG-IPMN and MSA, provisionally constitute a mucous acinar class of tumors based on morphology and NKX3.1 expression. Like salivary mucinous adenocarcinomas/SG-IPMN, SMCA also show alterations of the PTEN/PI3K/AKT pathway and may show progressive molecular alterations. We document the first extramammary tumor with a SEC16A::NOTCH1 fusion.

    Matched MeSH terms: Endoplasmic Reticulum/metabolism; Endoplasmic Reticulum/pathology
  12. Yang B, Zhang R, Leong Bin Abdullah MFI
    Toxicol Lett, 2024 Jan;391:71-85.
    PMID: 38101493 DOI: 10.1016/j.toxlet.2023.12.008
    INTRODUCTION: This systematic review aimed to assess the association between neuropsychiatric effects of substance use and occurrence of ER stress and unfolded protein response (UPR) through comprehensive electronic search of existing literature and review of their findings.

    METHODS: A comprehensive electronic literature search was carried out on research articles published between 1950 to July 2023 through major databases, such as Scopus, Web of Science, Google Scholar, PubMed, PsycINFO, EMBASE, Medline and Cochrane Library.

    RESULTS: A total of 21 research articles were selected for review, which were comprised of sixteen animal studies, four human studies and one study on postmortem human brain samples. The selected studies revealed that alcohol, methamphetamine, cocaine, opioid and kratom exposures contributed to neuropsychiatric effects: such as decline in learning and memory function, executive dysfunction, alcohol, methamphetamine, opioid, and kratom dependence. These effects were associated with activation and persistent of ER stress and UPR with elevation of BiP and CHOP expression and the direction of ER stress is progressing towards the PERK-eIF2α-ATF4-CHOP pathway and neuronal apoptosis and neurodegeneration at various regions of the brain. In addition, regular kratom use in humans also contributed to elevation of p-JNK expression, denoting progress of ER stress towards the IRE1-ASK1-JNK-p-JNK pathway which was linked to kratom use disorder. However, treatment with certain compounds or biological agents could reverse the activation of ER stress.

    CONCLUSIONS: The neuropsychiatric effects of alcohol, methamphetamine, cocaine, opioid and kratom use may be associated with persistent ER stress and UPR.

    Matched MeSH terms: Endoplasmic Reticulum/metabolism; Endoplasmic Reticulum Stress
  13. Tan HK, Tengku Muhammad TS, Tan ML
    Data Brief, 2016 Jun;7:1506-10.
    PMID: 27182548 DOI: 10.1016/j.dib.2016.04.046
    The data presented in this article are related to the research article entitled "14-deoxy-11,12-didehydroandrographolide induces DDIT3-dependent endoplasmic reticulum stress-mediated autophagy in T-47D breast carcinoma cells", which the mechanistic toxicology properties of 14-deoxy-11,12-didehydroandrographolide (14-DDA) were investigated (Tan et al., 2016 [1]). This article describes the derivation of cytotoxic parameters of 14-DDA, cell viability data after double transfection and DDIT3 silencing in T-47D cells.
    Matched MeSH terms: Endoplasmic Reticulum Stress
  14. Rajikin MH, Yusoff M, Abdullah RB
    Theriogenology, 1994 Nov 01;42(6):1003-16.
    PMID: 16727604
    The structure and distribution of organelles within developing goat oocytes at various stages of incubation were studied. In oocytes with 5 or more layers of cumulus cells, at 0 h of incubation, the zona pellucida had developed although zonation was not evident. Lipid bodies were present but no mitochondria were observed. At 20 h, the zona pellucida had differentiated into thicker and thinner regions. Clusters of membrane-bound electron-transparent bodies were present in the perivitelline space. The mitochondria were fully developed, distributed evenly and usually in close proximity with dilated endoplasmic reticula. Cortical granules were distributed at the periphery. At 40 h of incubation, a number of mitochondria was hooded. In oocytes of 2 to 4 layers of cumulus cells at 0 h, the zona pellucida was penetrated by cumulus cell processes, and the mitochondria were not well developed. However, in 20-h incubated oocytes, fully developed mitochondria, many of which were hooded, could be observed. Clusters of membrane-bound electron-transparent bodies were also observed, while cortical granules were at the periphery. In cumulus-free oocytes, zonation within the zona pellucida was indistinct. Very few vesicles and lipid bodies were observed. At 20 h, mitochondria were sparsely distributed and were not well developed and lacked cristae. At 40 h, the zona pellucida was less compact, and the membrane-bound electron-transparent bodies were less numerous compared with those of the other groups. Endoplasmic reticula were not dilated, and cortical granules were few and had no definite pattern of distribution.
    Matched MeSH terms: Endoplasmic Reticulum
  15. Fauzi NAM, Tan ML, Hamid SBS, Singh D, Abdullah MFILB
    J Addict Med, 2022 2 28;16(6):e374-e381.
    PMID: 35220333 DOI: 10.1097/ADM.0000000000000988
    OBJECTIVES: This study determined the association between expression of the endoplasmic reticulum (ER) stress sensor mRNA in the peripheral leukocytes and the patterns of kratom use and evaluated the correlations between the levels of the ER stress sensor mRNA and the severity of kratom dependence and kratom induced depressive symptoms among people who use kratom (PWUK).

    METHODS: A total of 20 PWUK and 20 age matched non-kratom using healthy controls were recruited. Data collected from PWUK included patterns of kratom use, severity of kratom dependence, and severity of depressive symptoms during abstinence from kratom. The mRNA expression of binding immunoglobulin protein ( BiP ), X-box binding protein 1, activating transcription factor 4, and C/-EBP homologous protein ( CHOP ) (major indicators of ER stress response) were analyzed using quantitative reverse transcription polymerase chain reaction in leucocyte-derived total RNA sample of the participants.

    RESULTS: PWUK regardless of their pattern of kratom use recorded significantly higher expression of BiP mRNA compared with controls. Expression of CHOP mRNA was only significantly higher in those who first consumed kratom at the age of 18 years and above and those who have been using kratom for longer than 6 years, compared with controls. Higher expression of BiP , ATF4 , and CHOP mRNA were significantly positive correlated with greater severity of kratom dependence. Although only higher expression of BiP and CHOP mRNA were significantly positively correlated with greater severity of depressive symptoms.

    CONCLUSIONS: Regular kratom consumption may activate the ER stress pathway and there may be a link between altered ER stress response and kratom dependence and kratom induced depressive symptoms.

    Matched MeSH terms: Endoplasmic Reticulum Stress
  16. Koike H, Harada M, Kusamoto A, Xu Z, Tanaka T, Sakaguchi N, et al.
    Front Endocrinol (Lausanne), 2023;14:1124405.
    PMID: 36875481 DOI: 10.3389/fendo.2023.1124405
    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women, affecting up to 15% of women in this group, and the most common cause of anovulatory infertility. Although its etiology remains unclear, recent research has revealed the critical role of endoplasmic reticulum (ER) stress in the pathophysiology of PCOS. ER stress is defined as a condition in which unfolded or misfolded proteins accumulate in the ER because of an imbalance in the demand for protein folding and the protein-folding capacity of the ER. ER stress results in the activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR), which regulates various cellular activities. In principle, the UPR restores homeostasis and keeps the cell alive. However, if the ER stress cannot be resolved, it induces programmed cell death. ER stress has recently been recognized to play diverse roles in both physiological and pathological conditions of the ovary. In this review, we summarize current knowledge of the roles of ER stress in the pathogenesis of PCOS. ER stress pathways are activated in the ovaries of both a mouse model of PCOS and in humans, and local hyperandrogenism in the follicular microenvironment associated with PCOS is responsible for activating these. The activation of ER stress contributes to the pathophysiology of PCOS through multiple effects in granulosa cells. Finally, we discuss the potential for ER stress to serve as a novel therapeutic target for PCOS.
    Matched MeSH terms: Endoplasmic Reticulum Stress
  17. Al-Daghestani H, Qaisar R, Al Kawas S, Ghani N, Rani KGA, Azeem M, et al.
    Sci Rep, 2024 Feb 27;14(1):4719.
    PMID: 38413677 DOI: 10.1038/s41598-024-54944-7
    Hindlimb suspension (HLS) mice exhibit osteoporosis of the hindlimb bones and may be an excellent model to test pharmacological interventions. We investigated the effects of inhibiting endoplasmic reticulum (ER) stress with 4-phenyl butyrate (4-PBA) on the morphology, physicochemical properties, and bone turnover markers of hindlimbs in HLS mice. We randomly divided 21 male C57BL/6J mice into three groups, ground-based controls, untreated HLS group and 4-PBA treated group (HLS+4PBA) (100mg/kg/day, intraperitoneal) for 21 days. We investigated histopathology, micro-CT imaging, Raman spectroscopic analysis, and gene expression. Untreated HLS mice exhibited reduced osteocyte density, multinucleated osteoclast-like cells, adipocyte infiltration, and reduced trabecular striations on micro-CT than the control group. Raman spectroscopy revealed higher levels of ER stress, hydroxyproline, non-collagenous proteins, phenylalanine, tyrosine, and CH2Wag as well as a reduction in proteoglycans and adenine. Furthermore, bone alkaline phosphatase and osteocalcin were downregulated, while Cathepsin K, TRAP, and sclerostin were upregulated. Treatment with 4-PBA partially restored normal bone histology, increased collagen crosslinking, and mineralization, promoted anti-inflammatory markers, and downregulated bone resorption markers. Our findings suggest that mitigating ER stress with 4-PBA could be a therapeutic intervention to offset osteoporosis in conditions mimicking hindlimb suspension.
    Matched MeSH terms: Endoplasmic Reticulum Stress
  18. Pertiwi AK, Kwan TK, Gower DB
    J Steroid Biochem Mol Biol, 2002 Aug;81(4-5):363-7.
    PMID: 12361726
    The intracellular movements of pregnenolone in rat testes were investigated. Whole testes were incubated in the presence or absence of pregnenolone (2.5mM) in the medium for 120 min (in some studies 30, 60, and 90 min). The testes were homogenised, subcellular fractions prepared and analysed in quadruplicate for steroid content by gas chromatography-mass spectrometry with selected ion monitoring. Quantification of pregnenolone and 11 of its metabolites, obtained from non-incubated whole testes, provided values for endogenous amounts. Pregnenolone was the only steroid of quantitative importance found initially in the mitochondrial fraction but was subsequently found in the microsomal fraction, where metabolism occurred. Identification and quantification of metabolites indicated that both classical pathways for testosterone production were operating, with the 4-en-3-oxosteroid pathway predominating. By 120 min, virtually all pregnenolone metabolites, including pregnenolone itself, were found in the cytosol, consistent with an overall movement from mitochondria to endoplasmic reticulum to cytosol.
    Matched MeSH terms: Endoplasmic Reticulum/metabolism
  19. Zaman V, Colley FC
    Z Parasitenkd, 1975 Oct 16;47(3):169-85.
    PMID: 810990
    A light and electron microscopic study of Sarcocystis orientalis sp. n. was made. The life cycle of this parasite is in two hosts. Gametogony is in the intestinal epithelial cells of a predator, Python reticulatus. Isospora-like oocysts developed. Sporocysts average 9.1 by 7.7 mum. Rats (Rattus norvegicus) were infected with sporocysts and asexual stages developed. Ten days after infection large zoites (average 7.85 by 2.48 mum) were observed free in peripheral blood and within white blood cells. Small schizonts producing merozoites 2-3 mum long were seen in lung tissue. Tissue cysts developed in skeletal muscle and produced numerous cystozoites (average 5.53 by 1.38 mum). Fine structure was similar to previously described Sarcocystis spp.
    Matched MeSH terms: Endoplasmic Reticulum/ultrastructure
  20. Mohd Zain MZ, Ismail NH, Ahmad N, Sulong S, Karsani SA, Abdul Majid N
    Mol Biol Rep, 2020 Oct;47(10):7735-7743.
    PMID: 32959195 DOI: 10.1007/s11033-020-05848-y
    Telomerase is a cancer promoting ribonucleoprotein complex and is a potential therapeutic target for cancer. In this study, the effects of telomerase downregulation on the whole cell proteome were investigated. Understanding how the effect of downregulation on the whole proteome profile will generate a greater understanding of the possible roles played by telomerase in cancer. Downregulation was achieved by RNA interference (RNAi), targeting the telomerase reverse transcriptase (TERT) subunits of telomerase. Transfection of TERT siRNA downregulates TERT gene expression and induced downregulation of telomerase activity. Investigation of the effect of silencing TERT in telomerase was further validated through proteomic analysis by performing 2-dimension electrophoresis (2DE) coupled with MALDI-TOF/TOF. 12 protein spots in HeLa cells were reported to be significantly differentially expressed with 11 of them were upregulated and 1 downregulated. Through STRING analysis, differentially expressed proteins demonstrated strong associations with endoplasmic reticulum stress marker and mitochondrial energy production marker. In conclusions, the result exhibited novel integrated proteomic response involving endoplasmic reticulum stress and mitochondrial energy production in response to the TERT downregulation in cervical cancer cells.
    Matched MeSH terms: Endoplasmic Reticulum Stress*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links