Displaying all 14 publications

Abstract:
Sort:
  1. Yeo CC, Abu Bakar F, Chan WT, Espinosa M, Harikrishna JA
    Toxins (Basel), 2016 Feb 19;8(2):49.
    PMID: 26907343 DOI: 10.3390/toxins8020049
    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.
    Matched MeSH terms: Eukaryotic Cells/metabolism
  2. Chong ZX, Yeap SK, Ho WY
    PeerJ, 2021;9:e11165.
    PMID: 33976969 DOI: 10.7717/peerj.11165
    Transfection is a modern and powerful method used to insert foreign nucleic acids into eukaryotic cells. The ability to modify host cells' genetic content enables the broad application of this process in studying normal cellular processes, disease molecular mechanism and gene therapeutic effect. In this review, we summarized and compared the findings from various reported literature on the characteristics, strengths, and limitations of various transfection methods, type of transfected nucleic acids, transfection controls and approaches to assess transfection efficiency. With the vast choices of approaches available, we hope that this review will help researchers, especially those new to the field, in their decision making over the transfection protocol or strategy appropriate for their experimental aims.
    Matched MeSH terms: Eukaryotic Cells
  3. A Rahaman SN, Mat Yusop J, Mohamed-Hussein ZA, Aizat WM, Ho KL, Teh AH, et al.
    PeerJ, 2018;6:e5377.
    PMID: 30280012 DOI: 10.7717/peerj.5377
    Proteins of the DUF866 superfamily are exclusively found in eukaryotic cells. A member of the DUF866 superfamily, C1ORF123, is a human protein found in the open reading frame 123 of chromosome 1. The physiological role of C1ORF123 is yet to be determined. The only available protein structure of the DUF866 family shares just 26% sequence similarity and does not contain a zinc binding motif. Here, we present the crystal structure of the recombinant human C1ORF123 protein (rC1ORF123). The structure has a 2-fold internal symmetry dividing the monomeric protein into two mirrored halves that comprise of distinct electrostatic potential. The N-terminal half of rC1ORF123 includes a zinc-binding domain interacting with a zinc ion near to a potential ligand binding cavity. Functional studies of human C1ORF123 and its homologue in the fission yeast Schizosaccharomyces pombe (SpEss1) point to a role of DUF866 protein in mitochondrial oxidative phosphorylation.
    Matched MeSH terms: Eukaryotic Cells
  4. Dennin RH
    Malays J Med Sci, 2018 Mar;25(2):20-26.
    PMID: 30918452 DOI: 10.21315/mjms2018.25.2.3
    Extrachromosomal (ec) DNA in eukaryotic cells has been known for decades. The structures described range from linear double stranded (ds) DNA to circular dsDNA, distinct from mitochondrial (mt) DNA. The sizes of circular forms are described from some hundred base pairs (bp) up to more than 150 kbp. The number of molecules per cell ranges from several hundred to a thousand. Semi-quantitative determinations of circular dsDNA show proportions as high as several percentages of the total DNA per cell. These ecDNA fractions harbor sequences that are known to be present in chromosomal DNA (chrDNA) too. Sequencing projects on, for example the human genome, have to take into account the ecDNA sequences which are simultaneously ascertained; corrections cannot be performed retrospectively. Concerning the results of sequencings derived from extracted whole DNA: if the ecDNA fractions contained therein are not taken into account, erroneous conclusions at the chromosomal level may result.
    Matched MeSH terms: Eukaryotic Cells
  5. Khan AH, Bayat H, Rajabibazl M, Sabri S, Rahimpour A
    World J Microbiol Biotechnol, 2017 Jan;33(1):4.
    PMID: 27837408
    Glycosylation represents the most widespread posttranslational modifications, found in a broad spectrum of natural and therapeutic recombinant proteins. It highly affects bioactivity, site-specificity, stability, solubility, immunogenicity, and serum half-life of glycoproteins. Numerous expression hosts including yeasts, insect cells, transgenic plants, and mammalian cells have been explored for synthesizing therapeutic glycoproteins. However, glycosylation profile of eukaryotic expression systems differs from human. Glycosylation strategies have been proposed for humanizing the glycosylation pathways in expression hosts which is the main theme of this review. Besides, we also highlighted the glycosylation potential of protozoan parasites by emphasizing on the mammalian-like glycosylation potential of Leishmania tarentolae known as Leishmania expression system.
    Matched MeSH terms: Eukaryotic Cells/metabolism*
  6. Mohseni J, Zabidi-Hussin ZA, Sasongko TH
    Genet Mol Biol, 2013 Sep;36(3):299-307.
    PMID: 24130434 DOI: 10.1590/S1415-47572013000300001
    Histone acetylation plays an important role in regulation of transcription in eukaryotic cells by promoting a more relaxed chromatin structure necessary for transcriptional activation. Histone deacetylases (HDACs) remove acetyl groups and suppress gene expression. HDAC inhibitors (HDACIs) are a group of small molecules that promote gene transcription by chromatin remodeling and have been extensively studied as potential drugs for treating of spinal muscular atrophy. Various drugs in this class have been studied with regard to their efficacy in increasing the expression of survival of motor neuron (SMN) protein. In this review, we discuss the current literature on this topic and summarize the findings of the main studies in this field.
    Matched MeSH terms: Eukaryotic Cells
  7. Graham LE, Knack JJ, Graham ME, Graham JM, Zulkifly S
    J Phycol, 2015 Jun;51(3):408-18.
    PMID: 26986658 DOI: 10.1111/jpy.12296
    Periphyton dominated by the cellulose-rich filamentous green alga Cladophora forms conspicuous growths along rocky marine and freshwater shorelines worldwide, providing habitat for diverse epibionts. Bacterial epibionts have been inferred to display diverse functions of biogeochemical significance: N-fixation and other redox reactions, phosphorus accumulation, and organic degradation. Here, we report taxonomic diversity of eukaryotic and prokaryotic epibionts and diversity of genes associated with materials cycling in a Cladophora metagenome sampled from Lake Mendota, Dane Co., WI, USA, during the growing season of 2012. A total of 1,060 distinct 16S, 173 18S, and 351 28S rRNA operational taxonomic units, from which >220 genera or species of bacteria (~60), protists (~80), fungi (6), and microscopic metazoa (~80), were distinguished with the use of reference databases. We inferred the presence of several algal taxa generally associated with marine systems and detected Jaoa, a freshwater periphytic ulvophyte previously thought endemic to China. We identified six distinct nifH gene sequences marking nitrogen fixation, >25 bacterial and eukaryotic cellulases relevant to sedimentary C-cycling and technological applications, and genes encoding enzymes in aerobic and anaerobic pathways for vitamin B12 biosynthesis. These results emphasize the importance of Cladophora in providing habitat for microscopic metazoa, fungi, protists, and bacteria that are often inconspicuous, yet play important roles in ecosystem biogeochemistry.
    Matched MeSH terms: Eukaryotic Cells
  8. Sahebi M, Hanafi MM, van Wijnen AJ, Azizi P, Abiri R, Ashkani S, et al.
    Gene, 2016 Aug 10;587(2):107-19.
    PMID: 27154819 DOI: 10.1016/j.gene.2016.04.057
    Alternative pre-mRNA splicing provides a source of vast protein diversity by removing non-coding sequences (introns) and accurately linking different exonic regions in the correct reading frame. The regulation of alternative splicing is essential for various cellular functions in both pathological and physiological conditions. In eukaryotic cells, this process is commonly used to increase proteomic diversity and to control gene expression either co- or post-transcriptionally. Alternative splicing occurs within a megadalton-sized, multi-component machine consisting of RNA and proteins; during the splicing process, this complex undergoes dynamic changes via RNA-RNA, protein-protein and RNA-protein interactions. Co-transcriptional splicing functionally integrates the transcriptional machinery, thereby enabling the two processes to influence one another, whereas post-transcriptional splicing facilitates the coupling of RNA splicing with post-splicing events. This review addresses the structural aspects of spliceosomes and the mechanistic implications of their stepwise assembly on the regulation of pre-mRNA splicing. Moreover, the role of phosphorylation-based, signal-induced changes in the regulation of the splicing process is demonstrated.
    Matched MeSH terms: Eukaryotic Cells
  9. Aye Aye Wynn, Nang Khin Mya
    MyJurnal
    Telomeres are specialized DNA complexes found at the end of all chromosomes. Human, as a member of eukaryotic cells, requires telomeres to maintain the length and the stability of chromosomes. Telomeres lose their non-coding DNA sequence to protect the genetic information on the chromosomes. Shortening of telomeres occurs in most somatic cells after sufficient cell division in a human lifetime. Normal haemopoietic cells or stem cells possess telomerase enzyme to restore telomeres and allow further replication. Telomere dysfunction is the origin of several degenerative disorders and also predispose to cancer. Roles of telomere in carcinogenesis and ageing related disorders are reviewed.
    Matched MeSH terms: Eukaryotic Cells
  10. Amelia K, Singh J, Shah FH, Bhore SJ
    Pharmacognosy Res, 2015 Apr-Jun;7(2):209-12.
    PMID: 25829797 DOI: 10.4103/0974-8490.150536
    Common bean (Phaseolus vulgaris L.) is an important part of the human diet and serves as a source of natural products. Identification and understanding of genes in P. vulgaris is important for its improvement. Characterization of expressed sequence tags (ESTs) is one of the approaches in understanding the expressed genes. For the understanding of genes expression in P. vulgaris pod-tissue, research work of ESTs generation was initiated by constructing cDNA libraries using 5-day and 20-day old bean-pod-tissues. Altogether, 5972 cDNA clones were isolated to have ESTs. While processing ESTs, we found a transcript for calmodulin (CaM) gene. It is an important gene that encodes for a calcium-binding protein and known to express in all eukaryotic cells. Hence, this study was undertaken to analyse and annotate it.
    Matched MeSH terms: Eukaryotic Cells
  11. Thanh T, Chi VTQ, Omar H, Abdullah MP, Napis S
    Int J Mol Sci, 2012;13(3):2676-2691.
    PMID: 22489117 DOI: 10.3390/ijms13032676
    The availability of highly active homologous promoters is critical in the development of a transformation system and improvement of the transformation efficiency. To facilitate transformation of green microalga Ankistrodesmus convolutus which is considered as a potential candidate for many biotechnological applications, a highly-expressed native promoter sequence of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (AcRbcS) has been used to drive the expression of β-glucuronidase (gusA) gene in this microalga. Besides the determination of the transcription start site by 5'-RACE, sequence analysis revealed that AcRbcS promoter contained consensus TATA-box and several putative cis-acting elements, including some representative light-regulatory elements (e.g., G-box, Sp1 motif and SORLIP2), which confer light responsiveness in plants, and several potential conserved motifs (e.g., CAGAC-motif, YCCYTGG-motifs and CACCACA-motif), which may be involved in light responsiveness of RbcS gene in green microalgae. Using AcRbcS promoter::gusA translational fusion, it was demonstrated that this promoter could function as a light-regulated promoter in transgenic A. convolutus, which suggested that the isolated AcRbcS promoter was a full and active promoter sequence that contained all cis-elements required for developmental and light-mediated control of gene expression, and this promoter can be used to drive the expression of heterologous genes in A. convolutus. This achievement therefore advances the development of A. convolutus as an alternative expression system for the production of recombinant proteins. This is the first report on development of gene manipulation system for unicellular green alga A. convolutus.
    Matched MeSH terms: Eukaryotic Cells/metabolism
  12. Jamar NH, Kritsiligkou P, Grant CM
    Sci Rep, 2018 03 01;8(1):3894.
    PMID: 29497115 DOI: 10.1038/s41598-018-22183-2
    Eukaryotic cells contain translation-associated mRNA surveillance pathways which prevent the production of potentially toxic proteins from aberrant mRNA translation events. We found that loss of mRNA surveillance pathways in mutants deficient in nonsense-mediated decay (NMD), no-go decay (NGD) and nonstop decay (NSD) results in increased protein aggregation. We have isolated and identified the proteins that aggregate and our bioinformatic analyses indicates that increased aggregation of aggregation-prone proteins is a general occurrence in mRNA surveillance mutants, rather than being attributable to specific pathways. The proteins that aggregate in mRNA surveillance mutants tend to be more highly expressed, more abundant and more stable proteins compared with the wider proteome. There is also a strong correlation with the proteins that aggregate in response to nascent protein misfolding and an enrichment for proteins that are substrates of ribosome-associated Hsp70 chaperones, consistent with susceptibility for aggregation primarily occurring during translation/folding. We also identified a significant overlap between the aggregated proteins in mRNA surveillance mutants and ageing yeast cells suggesting that translation-dependent protein aggregation may be a feature of the loss of proteostasis that occurs in aged cell populations.
    Matched MeSH terms: Eukaryotic Cells/metabolism
  13. Menon N, Mariappan V, Vellasamy KM, Samudi C, See JX, Ganesh PS, et al.
    Access Microbiol, 2020;2(5):acmi000110.
    PMID: 32974575 DOI: 10.1099/acmi.0.000110
    Burkholderia pseudomallei is the causative agent for melioidosis. Because of its intracellular nature, the bacterium is capable of replicating within a plethora of eukaryotic cell lines. B. pseudomallei can remain dormant within host cells without symptoms for years, causing recrudescent infections. Here, we investigated the pathogenesis mechanism behind the suppression of T cell responses by B. pseudomallei . Peripheral blood mononuclear cells (1×106 cells/well) isolated by Ficoll Paque (Sigma-Aldrich) density gradient centrifugation were incubated with optimized concentrations of bacterial crude culture filtrate antigens (CFAs) (10 ug ml-1) and heat-killed bacteria [1 : 10 multiplicity of infection (m.o.i.)]. Following incubation, cells were investigated for surface expression of coinhibitory molecules by flow cytometry. We found that B. pseudomallei induced the upregulation of programmed death 1 (PD-1), a molecule responsible for T cell exhaustion, on T cells in vitro following exposure to crude CFAs of B. pseudomallei . This upregulation of PD-1 probably contributes to poor immune surveillance and disease pathogenesis.
    Matched MeSH terms: Eukaryotic Cells
  14. Syuhada NH, Merican F, Zaki S, Broady PA, Convey P, Muangmai N
    Sci Rep, 2022 Jan 20;12(1):1080.
    PMID: 35058560 DOI: 10.1038/s41598-022-05116-y
    This study was initiated following the serendipitous discovery of a unialgal culture of a Stichococcus-like green alga (Chlorophyta) newly isolated from soil collected on Signy Island (maritime Antarctica) in growth medium supplemented with 100 µg/mL cycloheximide (CHX, a widely used antibiotic active against most eukaryotes). In order to test the generality of CHX resistance in taxa originally identified as members of Stichococcus (the detailed taxonomic relationships within this group of algae have been updated since our study took place), six strains were studied: two strains isolated from recent substrate collections from Signy Island (maritime Antarctica) ("Antarctica" 1 and "Antarctica" 2), one isolated from this island about 50 years ago ("Antarctica" 3) and single Arctic ("Arctic"), temperate ("Temperate") and tropical ("Tropical") strains. The sensitivity of each strain towards CHX was compared by determining the minimum inhibitory concentration (MIC), and growth rate and lag time when exposed to different CHX concentrations. All strains except "Temperate" were highly resistant to CHX (MIC > 1000 µg/mL), while "Temperate" was resistant to 62.5 µg/mL (a concentration still considerably greater than any previously reported for algae). All highly resistant strains showed no significant differences in growth rate between control and treatment (1000 µg/mL CHX) conditions. Morphological examination suggested that four strains were consistent with the description of the species Stichococcus bacillaris while the remaining two conformed to S. mirabilis. However, based on sequence analyses and the recently available phylogeny, only one strain, "Temperate", was confirmed to be S. bacillaris, while "Tropical" represents the newly erected genus Tetratostichococcus, "Antarctica 1" Tritostichococcus, and "Antarctica 2", "Antarctica 3" and "Arctic" Deuterostichococcus. Both phylogenetic and CHX sensitivity analyses suggest that CHX resistance is potentially widespread within this group of algae.
    Matched MeSH terms: Eukaryotic Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links