Displaying all 13 publications

Abstract:
Sort:
  1. Ebrahimi M, Rajion MA, Meng GY, Soleimani Farjam A
    Biomed Res Int, 2014;2014:749341.
    PMID: 24719886 DOI: 10.1155/2014/749341
    In this study, control chevon (goat meat) and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA) in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon) that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n = 10 in each group) for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA) in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P < 0.05) in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
  2. Hadjighassem M, Kamalidehghan B, Shekarriz N, Baseerat A, Molavi N, Mehrpour M, et al.
    Nutr J, 2015;14:20.
    PMID: 25889793 DOI: 10.1186/s12937-015-0012-5
    Dietary omega-6 and omega-3 fatty acids have remarkable impacts on the levels of DHA in the brain and retina. Low levels of DHA in plasma and blood hamper visual and neural development in children and cause dementia and cognitive decline in adults. The level of brain-derived neurotrophic factors (BDNF) changes with dietary omega-3 fatty acid intake. BDNF is known for its effects on promoting neurogenesis and neuronal survival.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology
  3. Golkhalkhali B, Rajandram R, Paliany AS, Ho GF, Wan Ishak WZ, Johari CS, et al.
    Asia Pac J Clin Oncol, 2018 Jun;14(3):179-191.
    PMID: 28857425 DOI: 10.1111/ajco.12758
    AIM: Colorectal cancer patients on chemotherapy usually have elevated levels of inflammatory markers and experience numerous side effects from chemotherapy thereby leading to poor quality of life. Omega-3 fatty acid and microbial cell preparation (MCP) have been known to provide significant benefits in patients on chemotherapy. The aim of this study was to determine the effect of supplementation of omega-3 fatty acid and MCP in quality of life, chemotherapy side effects and inflammatory markers in colorectal cancer patients on chemotherapy.

    METHODS: A double-blind randomized study was carried out with 140 colorectal cancer patients on chemotherapy. Subjects were separated into two groups to receive either placebo or MCP [30 billion colony-forming unit (CFUs) per sachet] at a dose of two sachets daily for 4 weeks, and omega-3 fatty acid at a dose of 2 g daily for 8 weeks. Outcomes measured were quality of life, side effects of chemotherapy and levels of inflammatory markers such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and C-reactive protein.

    RESULTS: The supplementation with MCP and omega-3 fatty acid improved the overall quality of life and alleviated certain side effects of chemotherapy. The supplementation with MCP and omega-3 fatty acid also managed to reduce the level of IL-6 (P = 0.002). There was a significant rise in the placebo group's serum TNF-α (P = 0.048) and IL-6 (P = 0.004).

    CONCLUSION: The combined supplementation with MCP and omega-3 fatty acid may improve quality of life, reduce certain inflammatory biomarkers and relieve certain side effects of chemotherapy in colorectal patients on chemotherapy.

    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology
  4. Hafandi A, Begg DP, Premaratna SD, Sinclair AJ, Jois M, Weisinger RS
    Comp. Med., 2014 Apr;64(2):106-9.
    PMID: 24674584
    Dietary deficiency of ω3 fatty acid during development leads to impaired cognitive function. However, the effects of multiple generations of ω3 fatty-acid deficiency on cognitive impairment remain unclear. In addition, we sought to test the hypothesis that the cognitive impairments of ω3 fatty-acid-deficient mice are mediated through the arachidonic acid-cyclooxygenase (COX) pathway. To address these issues, C57BL/6J mice were bred for 3 generations and fed diets either deficient (DEF) or sufficient (SUF) in ω3 fatty acids. At postnatal day 21, the F3 offspring remained on the dam's diet or were switched to the opposite diet, creating 4 groups. In addition, 2 groups that remained on the dam's diet were treated with a COX inhibitor. At 19 wk of age, spatial-recognition memory was tested on a Y-maze. Results showed that 16 wk of SUF diet reversed the cognitive impairment of F3 DEF mice. However, 16 wk of ω3 fatty-acid-deficient diet impaired the cognitive performance of the F3 SUF mice, which did not differ from that of the F3 DEF mice. These findings suggest that the cognitive deficits after multigenerational maintenance on ω3 fatty-acid-deficient diet are not any greater than are those after deficiency during a single generation. In addition, treatment with a COX inhibitor prevented spatial-recognition deficits in F3 DEF mice. Therefore, cognitive impairment due to dietary ω3 fatty-acid deficiency appears to be mediated by the arachidonic acid-COX pathway and can be prevented by 16 wk of dietary repletion with ω3 fatty acids or COX inhibition.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
  5. Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, et al.
    BMC Neurosci, 2012;13:109.
    PMID: 22989138 DOI: 10.1186/1471-2202-13-109
    This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague-Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
  6. Kassem AA, Abu Bakar MZ, Yong Meng G, Mustapha NM
    ScientificWorldJournal, 2012;2012:851437.
    PMID: 22489205 DOI: 10.1100/2012/851437
    The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO): 50% cod liver oil (CLO) (1 : 1), 84% SBO: 16% CLO (6 : 1), 96% SBO: 4% CLO (30 : 1). Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
  7. Yashodhara BM, Umakanth S, Pappachan JM, Bhat SK, Kamath R, Choo BH
    Postgrad Med J, 2009 Feb;85(1000):84-90.
    PMID: 19329703 DOI: 10.1136/pgmj.2008.073338
    Omega-3 fatty acids (omega-3 FAs) are essential fatty acids with diverse biological effects in human health and disease. Reduced cardiovascular morbidity and mortality is a well-established benefit of their intake. Dietary supplementation may also benefit patients with dyslipidaemia, atherosclerosis, hypertension, diabetes mellitus, metabolic syndrome, obesity, inflammatory diseases, neurological/ neuropsychiatric disorders and eye diseases. Consumption of omega-3 FAs during pregnancy reduces the risk of premature birth and improves intellectual development of the fetus. Fish, fish oils and some vegetable oils are rich sources of omega-3 FAs. According to the UK Scientific Advisory Committee on Nutrition guidelines (2004), a healthy adult should consume a minimum of two portions of fish a week to obtain the health benefit. This review outlines the health implications, dietary sources, deficiency states and recommended allowances of omega-3 FAs in relation to human nutrition.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
  8. Sopian NF, Ajat M, Shafie NI, Noor MH, Ebrahimi M, Rajion MA, et al.
    Int J Mol Sci, 2015;16(7):15800-10.
    PMID: 26184176 DOI: 10.3390/ijms160715800
    Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
  9. Arbabi L, Baharuldin MT, Moklas MA, Fakurazi S, Muhammad SI
    Behav Brain Res, 2014 Sep 1;271:65-71.
    PMID: 24867329 DOI: 10.1016/j.bbr.2014.05.036
    Postpartum depression (PPD) is a psychiatric disorder that occurs in 10-15% of childbearing women. It is hypothesized that omega-3 fatty acids, which are components of fish oil, may attenuate depression symptoms. In order to examine this hypothesis, the animal model of postpartum depression was established in the present study. Ovariectomized female rats underwent hormone-simulated pregnancy (HSP) regimen and received progesterone and estradiol benzoate or vehicle for 23 days, mimicking the actual rat's pregnancy. The days after hormone termination were considered as the postpartum period. Forced feeding of menhaden fish oil, as a source of omega-3, with three doses of 1, 3, and 9g/kg/d, fluoxetine 15mg/kg/d, and distilled water 2ml/d per rat started in five postpartum-induced and one vehicle group on postpartum day 1 and continued for 15 consecutive days. On postpartum day 15, all groups were tested in the forced swimming test (FST) and open field test (OFT), followed by a biochemical assay. Results showed that the postpartum-induced rats not treated with menhaden fish oil, exhibited an increase in immobility time seen in FST, hippocampal concentration of corticosterone and plasmatic level of corticosterone, and pro-inflammatory cytokines. These depression-related effects were attenuated by supplementation of menhaden fish oil with doses of 3 and 9g/kg. Moreover, results of rats supplemented with menhaden fish oil were comparable to rats treated with the clinically effective antidepressant, fluoxetine. Taken together, these results suggest that menhaden fish oil, rich in omega-3, exerts beneficial effect on postpartum depression and decreases the biomarkers related to depression such as corticosterone and pro-inflammatory cytokines.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
  10. Tekeleselassie AW, Goh YM, Rajion MA, Motshakeri M, Ebrahimi M
    ScientificWorldJournal, 2013;2013:757593.
    PMID: 24294136 DOI: 10.1155/2013/757593
    This study was aimed to investigate the effects of dietary fatty acids on the accretion pattern of major fat pads, inguinal fat cellularity, and their relation with plasma leptin concentration. Forty Sprague-Dawley rats were randomly assigned into four groups and received the following diets for 22 weeks: (1) standard rat chow diet (CTRL), (2) CTRL + 10% (w/w) butter (HFAR), (3) CTRL + 3.33% (w/w) menhaden fish oil + 6.67% (w/w) soybean oil (MFAR), and (4) CTRL + 6.67% (w/w) menhaden fish oil + 3.33% (w/w) soybean oil (LFAR). Inguinal fat cellularity and plasma leptin concentration were measured in this study. Results for inguinal fat cellularity showed that the mean adipocyte number for the MFAR (9.2 ∗ 10⁵ ± 3.6) and LFAR (8.5 ∗ 10⁵ ± 5.1) groups was significantly higher (P < 0.05) than the rest, while the mean adipocyte diameter of HFAR group was larger (P < 0.05) (46.2 ± 2.8) than the rest. The plasma leptin concentration in the HFAR group was higher (P < 0.05) (3.22 ± 0.32 ng/mL), than the other groups. The higher inguinal fat cellularity clearly indicated the ability of the polyunsaturated fatty acids (PUFA) and butter supplemented diets to induce hyperplasia and hypertrophy of fat cells, respectively, which caused adipocyte remodeling due to hyperleptinemia.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
  11. Maroufyan E, Kasim A, Ebrahimi M, Loh TC, Hair-Bejo M, Soleimani AF
    Poult Sci, 2012 Sep;91(9):2173-82.
    PMID: 22912451 DOI: 10.3382/ps.2012-02317
    This study was carried out to investigate the modulatory effects of dietary methionine and n-6/n-3 polyunsaturated fatty acids (PUFA) ratio on immune response and performance of infectious bursal disease (IBD)-challenged broiler chickens. In total, 350 one-day-old male broiler chicks were assigned to 1 of the 6 dietary treatment groups in a 3 × 2 factorial arrangement. There were 3 n-6/n-3 PUFA ratios (45, 5.5, and 1.5) and 2 levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that birds fed with dietary n-6/n-3 PUFA ratio of 5.5 had higher BW, lower feed intake, and superior FCR than other groups. However, the highest antibody response was observed in birds with dietary n-6/n-3 PUFA ratio of 1.5. Lowering n-6/n-3 PUFA ratio reduced bursa lesion score equally in birds fed with n-6/n-3 PUFA ratio of 5.5 and 1.5. Supplementation of methionine by twice the recommendation also improved FCR and reduced feed intake and bursa lesion score. However, in this study, the optimum performance (as measured by BW, feed intake, and FCR) did not coincide with the optimum immune response (as measured by antibody titer). It seems that dietary n-3 PUFA modulates the broiler chicken performance and immune response in a dose-dependent but nonlinear manner. Therefore, it can be suggested that a balance of moderate level of dietary n-6/n-3 PUFA ratio (5.5) and methionine level (twice recommendation) might enhance immune response together with performance in IBD-challenged broiler chickens.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
  12. Yakubu A, Azlan A, Loh SP, Md Noor S
    J Obes, 2019;2019:4929131.
    PMID: 31354987 DOI: 10.1155/2019/4929131
    This review article stresses the effective role of dietary fish fillet docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on overweight as a risk factor of cardiovascular disease (CVD) via platelet phospholipid modification. Several reports have demonstrated that saturated fat in overweight evokes systemic inflammation and more importantly predisposes it to cardiovascular disorder. Prospective studies have shown that saturated fat is directly proportional to the level of arachidonic acids (AA), precursor of thromboxane in the platelet phospholipid membrane as omega-6 fatty acid in overweight and obese people. Some literature has demonstrated that omega-3 fatty acid from fish fillet ameliorates inflammation, reduces proinflammatory cytokine, inhibits signaling pathway, and regulates the physical composition of inflammatory leukocytes and free radicals (ROS). Yellow stripe scad (YSS) is a local Malaysian fish that has been shown to contain a comparable level of EPA/DHA content as observed in salmon. This review article will focus on the dietary role of fish fillet that will balance the omega-6 fatty acid/omega-3 fatty acid ratio in platelet phospholipid from YSS to manage and prevent healthy overweight/obesity-related risk factor of CVD and to avoid the risk orthodox drug treatment.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology
  13. Maroufyan E, Kasim A, Ebrahimi M, Loh TC, Bejo MH, Zerihun H, et al.
    Lipids Health Dis, 2012 Jan 25;11:15.
    PMID: 22273277 DOI: 10.1186/1476-511X-11-15
    BACKGROUND: Infectious bursal disease (IBD) results in economic loss due to mortality, reduction in production efficiency and increasing the usage of antibiotics. This study was carried out to investigate the modulatory roles of dietary n-3 polyunsaturated fatty acids (PUFA) enrichment in immune response and performance of IBD challenged broiler chickens.

    METHODS: A total of 300 day old male broiler chicks were assigned to four dietary n-3 PUFA ascending levels as the treatment groups (T1: 0.5; T2: 8.0; T3: 11.5; T4: 16.5) using combinations of tuna oil and sunflower oil. All diets were isocaloric and isonitrogenous. On day 28, all birds were challenged with IBD virus. Antibody titer, cytokine production, bursa lesion pre and post-challenge and lymphoid organ weight were recorded.

    RESULTS: On d 42 the highest body weight was observed in the T2 and T3 and the lowest in T4 chickens. Feed conversion ratio of the T2 broilers was significantly better than the other groups. Although productive parameters were not responded to the dietary n-3 PUFA in a dose-dependent manner, spleen weight, IBD and Newcastle disease antibody titers and IL-2 and IFN-γ concentrations were constantly elevated by n-3 PUFA enrichment.

    CONCLUSIONS: Dietary n-3 PUFA enrichment may improve the immune response and IBD resistance, but the optimum performance does not coincide with the optimum immune response. It seems that dietary n-3 PUFA modulates the broiler chicken performance and immune response in a dose-dependent manner. Thus, a moderate level of dietary n-3 PUFA enrichment may help to put together the efficiency of performance and relative immune response enhancement in broiler chickens.

    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links