Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Shamsul NS, Kamarudin SK, Rahman NA
    Bioresour Technol, 2018 Jan;247:821-828.
    PMID: 30060418 DOI: 10.1016/j.biortech.2017.09.140
    Treated sludge, goat manure, sugarcane bagasse, empty fruit bunches of oil palm (EFBP) and dry leaves are agro wastes that have high potential for use as feedstocks for the production of 5-hydroxymethylfurfural (5-HMF). The focus of this study is to investigate the production of 5-HMF from agro wastes via co-hydrothermal (CHT) treatment and extraction. Present study include examine on agro waste's physical and chemical properties and also their thermal degradation behaviour. The analysis of the bio-oil products is conducted by FTIR and GC-MS. Co-hydrothermal experiments were conducted at a temperature of 300°C with an experimental time of 15min, followed by alcohol extraction. Highest carbon and hydrogen content are 45.94% and 6.49% (dry leaves) with maximum high heating value 18.39MJ/kg (dry leaves) and fix carbon value 6.60 (goat manure). Through CHT about 39% 5-HMF, 22.97% carboxylic acids, 0.97% of aromatic and 0.73% aldehyde obtained.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*; Furaldehyde/chemistry
  2. Krishna Kishore, R.
    Compendium of Oral Science, 2014;1(1):13-23.
    MyJurnal
    Honey is a rich source of natural nutrients. Its production is a slow, natural process with the pace of which varies seasonally. However, based on recent reports, we hypothesize that the long-term storage of processed honey, even under the most appropriate storage conditions, results in a deterioration of its quality. To test our hypothesis, we collected Tualang honey samples harvested during the years 2005, 2008, 2009 and 2010 and tested various parameters including physicochemical properties and also performed comparative analyses of antioxidant capacities to assess its medicinal values. Our results indicate that, upon long-term storage, the quality of honey samples deteriorates, as observed in our TH 2008 and TH 2005 year honey samples, which showed unacceptable quality based on the recommended criteria of free acidity (71 .34±1.31 meq/kg), moisture (27.72%), diastase activity (3.38±0.34 Goth scale) and hydroxymethylfurfural (HMF) (449.89±3.23 mg/kg) by Codex and European Commission Regulation. A significant (p
    Matched MeSH terms: Furaldehyde
  3. Zainuddin MF, Kar Fai C, Mohamed MS, Abdul Rahman N', Halim M
    PeerJ, 2022;10:e12833.
    PMID: 35251776 DOI: 10.7717/peerj.12833
    Nowadays, the replacement of petro-diesel with biodiesel has raised the concern among the community for the utilization of improper feedstocks and the cost involved. However, these issues can be solved by producing single cell oil (SCO) from lignocellulosic biomass hydrolysates by oleaginous microorganisms. This study introduced Yarrowia lipolytica JCM 2320 with a desiccated coconut residue (DCR) hydrolysate (obtained from the 2% dilute sulphuric acid pretreatment) as a carbon source in generating SCO. However, common inhibitors formed during acid pretreatment of biomass such as five-hydroxymethylfurfural (HMF), furfural, acetic acid and levulinic acid resulting from the sugar degradations may have detrimental effects towards the fermentation process. To visualize the effect of inhibitors on Y. lipolytica, an inhibitory study was conducted by adding 0.5-5.0 g/L of potential inhibitors to the YPD (yeast, peptone and D-glucose) medium. It was found that the presence of furfural at 0.5 g/L would increase the lag phase, which beyond that was detrimental to Y. lipolytica. Furthermore, increasing the five-hydroxymethylfurfural (HMF) concentration would increase the lag phase of Y. lipolytica, whereas, for acetic acid and levulinic acid, it showed a negligible effect. Detoxification was hence conducted to remove the potential inhibitors from the DCR hydrolysate prior its utilization in the fermentation. To examine the possibility of using adsorption resins for the detoxification of DCR hydrolysate, five different resins were tested (Amberlite® XAD-4, Amberlite® XAD-7, Amberlite® IR 120, Amberlite® IRA 96 and Amberlite® IRA 402) with five different concentrations of 1%, 3%, 5%, 10% and 15% (w/v), respectively. At resin concentration of 10%, Amberlite® XAD-4 recorded the highest SCO yield, 2.90 ± 0.02 g/L, whereas the control and the conventional overliming detoxification method, recorded only 1.29 ± 0.01 g/L and 1.27 ± 0.02 g/L SCO accumulation, respectively. Moreover, the fatty acid profile of the oil produced was rich in oleic acid (33.60%), linoleic acid (9.90%), and palmitic acid (14.90%), which indicates the potential as a good biodiesel raw material.
    Matched MeSH terms: Furaldehyde
  4. Ariffin AA, Ghazali HM, Kavousi P
    Food Chem, 2014 Jul 1;154:102-7.
    PMID: 24518321 DOI: 10.1016/j.foodchem.2013.12.082
    For the first time 5-hydroxymethyl-2-furaldehyde (HMF) was separated from crude palm oil (CPO), and its authenticity was determined using an RP-HPLC method. Separation was accomplished with isocratic elution of a mobile phase comprising water and methanol (92:8 v/v) on a Purospher Star RP-18e column (250mm×4.6mm, 5.0μm). The flow rate was adjusted to 1ml/min and detection was performed at 284nm. The method was validated, and results obtained exhibit a good recovery (95.58% to 98.39%). Assessment of precision showed that the relative standard deviations (RSD%) of retention times and peak areas of spiked samples were less than 0.59% and 2.66%, respectively. Further, the limit of detection (LOD) and LOQ were 0.02, 0.05mg/kg, respectively, and the response was linear across the applied ranges. The crude palm oil samples analysed exhibited HMF content less than 2.27mg/kg.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*; Furaldehyde/analysis
  5. Sarwono A, Man Z, Muhammad N, Khan AS, Hamzah WSW, Rahim AHA, et al.
    Ultrason Sonochem, 2017 Jul;37:310-319.
    PMID: 28427638 DOI: 10.1016/j.ultsonch.2017.01.028
    5-Hydroxymethylfurfural (HMF) has been identified as a promising biomass-derived platform chemical. In this study, one pot production of HMF was studied in ionic liquid (IL) under probe sonication technique. Compared with the conventional heating technique, the use of probe ultrasonic irradiation reduced the reaction time from hours to minutes. Glucose, cellulose and local bamboo, treated with ultrasonic, produced HMF in the yields of 43%, 31% and 13% respectively, within less than 10min. The influence of various parameters such as acoustic power, reaction time, catalysts and glucose loading were studied. About 40% HMF yield at glucose conversion above 90% could be obtained with 2% of catalyst in 3min. Negligible amount of soluble by-product was detected, and humin formation could be controlled by adjusting the different process parameters. Upon extraction of HMF, the mixture of ionic liquid and catalyst could be reused and exhibited no significant reduction of HMF yield over five successive runs. The purity of regenerated [C4C1im]Cl and HMF was confirmed by NMR spectroscopy, indicating neither changes in the chemical structure nor presence of any major contaminants during the conversion under ultrasonic treatment. 13C NMR suggests that [C4C1im]Cl/CrCl3 catalyses mutarotation of α-glucopyranose to β-glucopyranose leading to isomerization and finally conversion to HMF. The experimental results demonstrate that the use of probe sonication technique for conversion to HMF provides a positive process benefit.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*; Furaldehyde/chemistry
  6. Arai T, Aikawa S, Sudesh K, Arai W, Mohammad Rawi NF, Leh CPP, et al.
    World J Microbiol Biotechnol, 2024 Jun 13;40(8):242.
    PMID: 38869634 DOI: 10.1007/s11274-024-04041-8
    Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.
    Matched MeSH terms: Furaldehyde/analogs & derivatives; Furaldehyde/metabolism
  7. Nordin N, Hasbullah NH, Abu Bakar N
    Food Chem, 2024 Nov 15;458:140236.
    PMID: 38959805 DOI: 10.1016/j.foodchem.2024.140236
    Coffee, a globally consumed beverage, has raised concerns in Islamic jurisprudence due to the possible presence of alcohol compounds. This research aims to utilise the sensitivity and reliability of 1H NMR spectroscopy in the quantification of alcohol compounds such as ethanol, furfuryl alcohol, and 5-(hydroxymethyl) furfural (HMF) in commercial instant coffee. Analysis of seven products was performed using advanced 1H Nuclear Magnetic Resonance (NMR) spectroscopy together with Statistical Total Correlation Spectroscopy (STOCSY) and Resolution-Enhanced (RED)-STORM. The analysis of the 100 mg sample revealed the absence of ethanol. The amount of furfuryl alcohol and HMF in the selected commercial instant coffee samples was 0.817 μg and 0.0553 μg, respectively. This study demonstrates the utility of 1H NMR spectroscopy in accurate quantification of trace components for various applications.
    Matched MeSH terms: Furaldehyde/analogs & derivatives; Furaldehyde/analysis
  8. Lee CBTL, Wu TY, Ting CH, Tan JK, Siow LF, Cheng CK, et al.
    Bioresour Technol, 2019 Apr;278:486-489.
    PMID: 30711220 DOI: 10.1016/j.biortech.2018.12.034
    The performances of various anhydrous and aqueous choline chloride-dicarboxylic acid based deep eutectic solvents (DESs) were evaluated for furfural production from oil palm fronds without any additional catalyst. The effects of different carbon chain length dicarboxylic acids and water content in each DES on furfural production were investigated. Oil palm fronds, DES and water (0-5 ml) were mixed and reacted in an oil bath (60-300 min). Reacted oil palm fronds had the potential to be reused as cellulose-rich-valuable by-products. At 100 °C, aqueous choline chloride-oxalic acid (16.4 wt% H2O) produced the highest furfural yield of 26.34% and cellulose composition up to 72.79% in the reacted oil palm fronds. Despite operating at suitable reaction duration for dicarboxylic acid with longer carbon chain length, aqueous choline chloride-malonic acid and aqueous choline chloride-succinic acid performed poorly with furfural yield of less than 1%.
    Matched MeSH terms: Furaldehyde/chemistry*
  9. Kavousi P, Mirhosseini H, Ghazali H, Ariffin AA
    Food Chem, 2015 Sep 1;182:164-70.
    PMID: 25842323 DOI: 10.1016/j.foodchem.2015.02.135
    5-Hydroxymethylfurfural (HMF) is formed during heat treatment of carbohydrate-containing foods, especially in a deep-fat frying process. This study aimed to investigate the effect of amino acids on the formation and reduction of HMF from glucose, fructose and sucrose at frying temperature in model systems containing binary mixtures of an amino acid and a sugar in equal concentrations (0.3M). The results revealed that the formation of HMF from sugars accelerated in the presence of acidic amino acids (i.e. glutamic and aspartic acids). Conversely, the presence of basic amino acids (i.e. lysine, arginine and histidine) led to reduced concentrations of HMF to non-detectable levels in model systems. The results showed that both pH and heating time significantly affected the formation of HMF from fructose in the presence of glutamic acid. In this regard, a higher amount of HMF was formed at lower pH.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*; Furaldehyde/analysis; Furaldehyde/chemistry
  10. Lin KA, Oh WD, Zheng MW, Kwon E, Lee J, Lin JY, et al.
    J Colloid Interface Sci, 2021 Jun 15;592:416-429.
    PMID: 33691223 DOI: 10.1016/j.jcis.2021.02.030
    Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.
    Matched MeSH terms: Furaldehyde
  11. Madadi M, Elsayed M, Sun F, Wang J, Karimi K, Song G, et al.
    Bioresour Technol, 2023 Mar;371:128591.
    PMID: 36627085 DOI: 10.1016/j.biortech.2023.128591
    A new cutting-edge lignocellulose fractionation technology for the co-production of glucose, native-like lignin, and furfural was introduced using mannitol (MT)-assisted p-toluenesulfonic acid/pentanol pretreatment, as an eco-friendly process. The addition of optimized 5% MT in pretreatment enhanced the delignification rate by 29% and enlarged the surface area and biomass porosity by 1.07-1.80 folds. This increased the glucose yield by 45% (from 65.34 to 94.54%) after enzymatic hydrolysis relative to those without MT. The extracted lignin in the organic phase of pretreatment exhibited β-O-4 bonds (61.54/100 Ar) properties of native cellulosic enzyme lignin. Lignin characterization and molecular docking analyses revealed that the hydroxyl tails of MT were incorporated with lignin and formed etherified lignin, which preserved high lignin integrity. The solubilized hemicellulose (96%) in the liquid phase of pretreatment was converted into furfural with a yield of 83.99%. The MT-assisted pretreatment could contribute to a waste-free biorefinery pathway toward a circular bioeconomy.
    Matched MeSH terms: Furaldehyde
  12. Tan L, Wang M, Li X, Li H, Zhao J, Qu Y, et al.
    Bioresour Technol, 2016 Jan;200:572-8.
    PMID: 26539970 DOI: 10.1016/j.biortech.2015.10.079
    In this work, fractionation of empty fruit bunch (EFB) by bisulfite pretreatment was studied for the production of bioethanol and high value products to achieve biorefinery of EFB. EFB was fractionated to solid and liquor components by bisulfite process. The solid components were used for bioethanol production by quasi-simultaneous saccharification and fermentation. The liquor components were then converted to furfural by hydrolysis with sulfuric acid. Preliminary results showed that the concentration of furfural was highest at 18.8g/L with 0.75% sulfuric acid and reaction time of 25min. The conversion of xylose to furfural was 82.5%. Furthermore, we attempted to fractionate the liquor into hemicellulose sugars and lignin by different methods for producing potential chemicals, such as xylose, xylooligosaccharide, and lignosulfonate. Our research showed that the combination of bisulfite pretreatment and resin separation could effectively fractionate EFB components to produce bioethanol and other high value chemicals.
    Matched MeSH terms: Furaldehyde
  13. Liu J, Xuan D, Chai J, Guo D, Huang Y, Liu S, et al.
    ACS Omega, 2020 May 05;5(17):10011-10020.
    PMID: 32391489 DOI: 10.1021/acsomega.0c00365
    A mild and effective synthesis of resorcinol-furfural (RF) thermosetting resin was proposed with ethanol as a distinctive solvent, which, as a usually neglected factor, was shown to not only help form a homogeneous reaction system but also observably reduce the energy barriers between the early intermediates and transition states in addition reactions by explicit solvent effects, drawn from theoretical calculation conclusions. Besides, the para-additions on aromatic rings were more dominant than ortho-additions with the same reactants, which affected the final link types of monomers verified by Fourier transform infrared spectroscopy and two-dimensional nuclear magnetic resonance tests. The prepared resin can be assigned to a relatively fast gel speed and a high residual mass (65.25%) after pyrolysis in a N2 atmosphere by adjusting the molar ratios of F to R, and the curing of that was a complex reaction, with a curing temperature around 149 °C and an activation energy of about 49.11 kJ mol-1 obtained by the Kissinger method.
    Matched MeSH terms: Furaldehyde
  14. Khalil MI, Sulaiman SA, Gan SH
    Food Chem Toxicol, 2010 Aug-Sep;48(8-9):2388-92.
    PMID: 20595027 DOI: 10.1016/j.fct.2010.05.076
    5-Hydroxymethylfurfural (HMF) content is an indicator of the purity of honey. High concentrations of HMF in honey indicate overheating, poor storage conditions and old honey. This study investigated the HMF content of nine Malaysian honey samples, as well as the correlation of HMF formation with physicochemical properties of honey. Based on the recommendation by the International Honey Commission, three methods for the determination of HMF were used: (1) high performance liquid chromatography (HPLC), (2) White spectrophotometry and (3) Winkler spectrophotometry methods. HPLC and White spectrophotometric results yielded almost similar values, whereas the Winkler method showed higher readings. The physicochemical properties of honey (pH, free acids, lactones and total acids) showed significant correlation with HMF content and may provide parameters that could be used to make quick assessments of honey quality. The HMF content of fresh Malaysian honey samples stored for 3-6 months (at 2.80-24.87 mg/kg) was within the internationally recommended value (80 mg/kg for tropical honeys), while honey samples stored for longer periods (12-24 months) contained much higher HMF concentrations (128.19-1131.76 mg/kg). Therefore, it is recommended that honey should generally be consumed within one year, regardless of the type.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*; Furaldehyde/analysis
  15. Lawrence GD, Rahmat R, Makahleh A, Saad B
    J Chromatogr Sci, 2017 Nov 01;55(10):1043-1050.
    PMID: 28977384 DOI: 10.1093/chromsci/bmx073
    The measurement of α-dicarbonyls and other degradation products of sugars has become important in view of their toxicity. Although there are several methods used for their analysis, most require long reaction times to form UV absorbing or fluorescent derivatives and the nonpolar nature of commonly used derivatives necessitates relatively high concentrations of organic solvents for elution in reverse phase liquid chromatography. The present method describes the use of Girard-T reagent in a simple, one step derivatization of α-dicarbonyls and conjugated aldehydes and analysis using ion-pair reverse phase liquid chromatography. The limit of detection was in the range of 0.06-0.09 μM (4-12 ng/mL) for glyoxal, methylglyoxal, 3-deoxyglucosone and 5-hydroxymethylfurfural with good linear response and reproducibility using UV detection. The hydrazone derivatives were stable for several days in solution. The method was used to study degradation of several sugars and quantification of the target α-dicarbonyls and 5-hydroxymethylfurfural in several soft drinks.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*; Furaldehyde/analysis
  16. Abu-Bakar NB, Makahleh A, Saad B
    Talanta, 2014 Mar;120:47-54.
    PMID: 24468341 DOI: 10.1016/j.talanta.2013.11.081
    A fast and simple solvent microextraction technique using salting out-vortex-assisted liquid-liquid microextraction (salting out-VALLME) was developed for the extraction of furfurals (2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF) and 5-hydroxymethylfurfural (5-HMF)) and patulin (PAT) in fruit juice samples. The optimum extraction conditions for 5 mL sample were: extraction solvent, 1-hexanol; volume of extractant, 200 µL; vortex time, 45 s; salt addition, 20%. The simultaneous determination of the furfurals and PAT were investigated using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The separation was performed using ODS Hypersil C18 column (4.6 mm i.d × 250 mm, 5 μm) under gradient elution. The detection wavelengths used for all compounds were 280 nm except for 3-F (210 nm). The furfurals and PAT were successfully separated in less than 9 min. Good linearities (r(2)>0.99) were obtained within the range 1-5000 μg L(-1) for all compounds except for 3-F (10-5000 µg L(-1)) and PAT (0.5-100 μg L(-1)). The limits of detection (0.28-3.2 µg L(-1)) were estimated at S/N ratio of 3. The validated salting out-VALLME-HPLC method was applied for the analysis of furfurals and PAT in fruit juice samples (apple, mango and grape).
    Matched MeSH terms: Furaldehyde/analogs & derivatives*; Furaldehyde/isolation & purification
  17. Chin DWK, Lim S, Pang YL, Lim CH, Lee KM
    Bioresour Technol, 2019 Nov;292:121967.
    PMID: 31450064 DOI: 10.1016/j.biortech.2019.121967
    Ethylene glycol in the presence of sodium hydroxide was utilised as pretreatment for effective delignification and reduced the recalcitrance of lignocellulosic biomass which ramified the exposure of cellulose. Two-staged acid hydrolysis was also investigated which demonstrated its synergistic efficiency by minimising the deficiency of single stage acid hydrolysis. The operating parameters including acid concentration, temperature, residence time and cellulose loading for two-staged acid hydrolysis were studied by using ethylene glycol delignified degraded oil palm empty fruit bunch (DEFB) to recover the sugar based substrates for potential biofuels and other bio-chemicals production. In this study, stage I 45 wt% acid at 65 °C for 30 min coupled with high cellulose loading 21.25 w/v% and 12 wt% acid at 100 °C for 120 min was able to release a total of 89.8% optimum sugar yield with minimal formation of degradation products including 0.058 g/L furfural, 0.0251 g/L hydroxymethylfurfural and 0.200 g/L phenolic compounds.
    Matched MeSH terms: Furaldehyde
  18. Lasekan O, Teoh LS
    BMC Chem, 2019 Dec;13(1):133.
    PMID: 31891159 DOI: 10.1186/s13065-019-0650-3
    Background: The aroma chemistry and the contribution of the aroma compounds to the anti-oxidative properties of roasted yam have yet to be characterized. The growing popularity of roasted yam in regions where they are being consumed calls for a concerted effort to elucidate their aroma chemistry as well as their anti-oxidative properties.

    Results: The aroma compounds in roasted white yam (Dioscorea rotundata) were isolated and identified using static headspace-gas chromatography-mass spectrometry (SH-GC-MS) and gas chromatography-olfactometry (GC-O). In addition, the anti-oxidative activities of the most abundant volatile heterocyclic compounds (2 pyrroles, 4 furans and 3 pyrazines) were evaluated on their inhibitory effect towards the oxidation of hexanal for a period of 30 days. Twenty-nine aroma-active compounds with a flavour dilution (FD) factor range of 2-256 and an array of odour notes were obtained. Among them, the highest odour activities (FD ≥ 128) factors were determined for 2-acetyl furan and 2-acetylpyrrole. Other compounds with significant FD factors ≥ 32 were; 2-methylpyrazine, ethyl furfural, and 5-hydroxy methyl furfural.

    Conclusion: Results of the anti-oxidative activity showed that the pyrroles exhibited the greatest antioxidant activity among all the tested heterocyclic compounds. This was followed by the furans and the pyrazines which had the least antioxidant activity.

    Matched MeSH terms: Furaldehyde
  19. Wan Aida, W.M., Ho, C.W., Maskat, M.Y., Osman, H.
    MyJurnal
    Sensory attributes of four different palm sugars were related to gas chromatography/mass spectrometry (GC/MS) analysis using partial least squares regression (PLS). The sweet caramel and burnt-like sensory attributes were strongly associated with 2-furfural and 2-furan methanol volatile compounds. The sensory scores for roasty and nutty were also associated with the GC/MS ratings for roasty and nutty-like aroma by its highest scores obtained from 2-ethyl-5-methyl pyrazine, 2,5-dimethyl pyrazine and 2,3-dimethyl pyrazine volatile compounds along the PC1 dimension. PLS analysis did not show correlation for the character impact compound furaneol, 2-ethyl-3,5-dimethyl pyrazine (EDMP) and 2,3-diethyl-5-methyl pyrazine (DEMP), which are perceived to be responsible for the sweet caramel-like and roasty/nutty attributes of palm sugars, respectively. This lack of relationship could partially be explained by covariance among the sensory ratings for the samples.
    Matched MeSH terms: Furaldehyde
  20. Zainol MM, Amin NA, Asmadi M
    Bioresour Technol, 2015 Aug;190:44-50.
    PMID: 25919936 DOI: 10.1016/j.biortech.2015.04.067
    The aim of this work was to study the potential of biofuel and biomass processing industry side-products as acid catalyst. The synthesis of carbon cryogel from lignin-furfural mixture, prepared via sol-gel polycondensation at 90°C for 0.5h, has been investigated for biodiesel production. The effect of lignin to furfural (L/F) ratios, lignin to water (L/W) ratios and acid concentration on carbon cryogel synthesis was studied. The carbon cryogels were characterized and tested for oleic acid conversion. The thermally stable amorphous spherical carbon cryogel has a large total surface area with high acidity. Experimental results revealed the optimum FAME yield and oleic acid conversion of 91.3wt.% and 98.1wt.%, respectively were attained at 65°C for 5h with 5wt.% catalyst loading and 20:1 methanol to oleic acid molar ratio. Therefore, carbon cryogel is highly potential for heterogeneous esterification of free fatty acid to biodiesel.
    Matched MeSH terms: Furaldehyde/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links