METHODS: A total of 138 American Society of Anesthesiologists (ASA) I to III patients were randomly assigned into 2 groups and underwent baseline laryngoscopy in the sniffing position. Group BUHE patients (n = 69) were then intubated in the BUHE position, while group GLSC patients (n = 69) were intubated using GLSC laryngoscopy. Laryngeal exposure was measured using Percentage of Glottic Opening (POGO) score and Cormack-Lehane (CL) grading, and noninferiority will be declared if the difference in mean POGO scores between both groups do not exceed -15% at the lower limit of a 98% confidence interval (CI). Secondary outcomes measured included time required for intubation (TRI), number of intubation attempts, use of airway adjuncts, effort during laryngoscopy, and complications during intubation.
RESULTS: Mean POGO score in group BUHE was 80.14% ± 22.03%, while in group GLSC it was 86.45% ± 18.83%, with a mean difference of -6.3% (98% CI, -13.2% to 0.6%). In both groups, there was a significant improvement in mean POGO scores when compared to baseline laryngoscopy in the sniffing position (group BUHE, 25.8% ± 4.7%; group GLSC, 30.7% ± 6.8%) (P < .0001). The mean TRI was 36.23 ± 14.41 seconds in group BUHE, while group GLSC had a mean TRI of 44.33 ± 11.53 seconds (P < .0001). In patients with baseline CL 3 grading, there was no significant difference between mean POGO scores in both groups (group BUHE, 49.2% ± 19.6% versus group GLSC, 70.5% ± 29.7%; P = .054).
CONCLUSIONS: In the general population, BUHE intubation position provides a noninferior laryngeal view to GLSC intubation. The laryngeal views obtained in both approaches were superior to the laryngeal view obtained in the sniffing position. In view of the many advantages of the BUHE position for intubation, the lack of proven adverse effects, the simplicity, and the cost-effectiveness, we propose that clinicians should consider the BUHE position as the standard intubation position for the general population.
MATERIAL AND METHODS: A total of 80 adult patients who were scheduled for elective surgery under general anaesthesia were randomised to two groups: Group BM: Baska mask (n = 40) and Group IG: i-gel (n = 40). The assessment focused on ease of insertion, number of attempts, insertion time, number of corrective manoeuvres, oropharyngeal leak pressure, tidal volume, peak airway pressure (PAP) and post-insertion complications.
RESULTS: Group IG showed a significantly shorter median insertion time (13.3 [interquartile range, IQR 7.8] vs. 17.0 [IQR 9.6] s; P < 0.001), a higher percentage in the 'very easy' ease of insertion category (62.5% vs. 10.0%; P < 0.001), a higher percentage in the no corrective manoeuvre category (92.5% vs. 72.5%; P = 0.003) and a higher percentage in the no post-operative throat pain category (67.5% vs. 32.5%; P = 0.011) than Group BM. However, Group BM showed a significantly higher generated PAP than Group IG (12.7 [1.8] and 11.5 [2.2] cm H2O, respectively; P = 0.010). There were no significant differences in other parameters.
CONCLUSIONS: The i-gel was better than the Baska mask in terms of ease of insertion, speed of insertion, fewer corrective manoeuvres and less post-operative throat pain. However, the Baska mask had a better cuff seal, as shown by a higher generated PAP.
MATERIAL AND METHODS: A total of 58 patients who underwent elective surgery under general anaesthesia were randomised to two ETT groups, the PFT group (n = 29) and the UFR group (n = 29), for OFI in simulated difficult intubation patients using a rigid cervical collar. After successful standardised induction and relaxation, OFI and railroading of selected ETT were subsequently performed by a similarly experienced practitioner. Ease of insertion, degree of manipulation, time to successful intubation, post-intubation complications and haemodynamic changes were recorded for both groups.
RESULTS: he percentage of easy intubation was comparable between both groups with a slightly higher percentage in the UFR group than the PFT group (69.0% vs. 62.0%; P = 0.599). Degree of manipulation was also comparable between the two groups; the percentage of cases in which manipulation was not required was slightly higher in the UFR group than the PFT group (69.0% vs. 62.1%; P = 0.849). Time to successful intubation was also comparable between the groups, although the time was slightly shorter for the UFR group than the PFT group (56.9 s ± 39.7 s vs. 63.9 s ± 36.9 s; P = 0.488). There were also no significant differences in other parameters.
CONCLUSIONS: The Parker flex tip ETT was comparable to the unoflex reinforced ETT for OFI in simulated difficult airway patients.
METHODS: This was a randomised cross-over study conducted between 9 April to 5 May 2020 in the ED of University Malaya Medical Centre. Postgraduate Emergency Medicine trainees performed video laryngoscope-assisted intubation on an airway manikin with and without an aerosol box in a random order. Contamination was simulated by nebulised Glo Germ. Primary outcome was number of contaminated front and back body regions pre-doffing and post-doffing of PPE of the intubator and assistant. Secondary outcomes were intubation time, Cormack-Lehane score, number of intubation attempts and participants' feedback.
RESULTS: Thirty-six trainees completed the study interventions. The number of contaminated front and back body regions pre-doffing of PPE was significantly higher without the aerosol box (all p values<0.001). However, there was no significant difference in the number of contaminations post-doffing of PPE between using and not using the aerosol box, with a median contamination of zero. Intubation time was longer with the aerosol box (42.5 s vs 35.5 s, p<0.001). Cormack-Lehane scores were similar with and without the aerosol box. First-pass intubation success rate was 94.4% and 100% with and without the aerosol box, respectively. More participants reported reduced mobility and visibility when intubating with the aerosol box.
CONCLUSIONS: An aerosol box may significantly reduce exposure to contaminations but with increased intubation time and reduced operator's mobility and visibility. Furthermore, the difference in degree of contamination between using and not using an aerosol box could be offset by proper doffing of PPE.
METHODS: We evaluated the performance characteristics of the LMA Protector™ in 30 unparalysed, moderately obese patients. First attempt insertion rate, time for insertion, oropharyngeal leak pressure (OLP), and incidence of complications were recorded.
RESULTS: We found high first and second attempt insertion rates of 28(93%) and 1(33%) respectively, with one failed attempt where no capnography trace could be detected, presumably from a downfolded device tip. The LMA Protector™ was inserted rapidly in 21.0(4.0) seconds and demonstrated high OLP of 31.8(5.4) cmH2O. Fibreoptic assessment showed a clear view of vocal cords in 93%. The incidence of blood staining on removal of device was 48%, postoperative sore throat 27%, dysphagia 10% and dysphonia 20% (all self-limiting, resolving a few hours postoperatively).
CONCLUSIONS: We conclude that the LMA Protector™ was associated with easy, expedient first attempt insertion success, demonstrating high oropharyngeal pressures and good anatomical position in the moderately obese population, with relatively low postoperative airway morbidity.
TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry, ACTRN12617001152314 . Registered 7 August 2017.