MATERIAL AND METHODS: Somatosensory evoked magnetic fields (SEFs) were elicited in 10 patients with somatosensory tumors and in 10 control participants using electrical stimulation of the median nerve via the right and left wrists. We localized the N20m component of the SEFs using dynamic statistical parametric mapping (dSPM) and standardized low-resolution brain electromagnetic tomography (sLORETA) combined with 3D magnetic resonance imaging (MRI). The obtained coordinates were compared between groups. Finally, we statistically evaluated the N20m parameters across hemispheres using non-parametric statistical tests.
RESULTS: The N20m sources were accurately localized to Brodmann area 3b in all members of the control group and in seven of the patients; however, the sources were shifted in three patients relative to locations outside the primary somatosensory cortex (SI). Compared with the affected (tumor) hemispheres in the patient group, N20m amplitudes and the strengths of the current sources were significantly lower in the unaffected hemispheres and in both hemispheres of the control group. These results were consistent for both dSPM and sLORETA approaches.
CONCLUSION: Tumors in the sensorimotor cortex lead to cortical functional reorganization and an increase in N20m amplitude and current-source strengths. Noise-normalized approaches for MEG analysis that are integrated with MRI show accurate and reliable localization of sensorimotor function.
METHODS: Such activity is recorded through various neuroimaging techniques like fMRI, EEG, MEG etc. EEG signals based localization is termed as EEG source localization. The source localization problem is defined by two complementary problems; the forward problem and the inverse problem. The forward problem involves the modeling how the electromagnetic sources cause measurement in sensor space, while the inverse problem refers to the estimation of the sources (causes) from observed data (consequences). Usually, this inverse problem is ill-posed. In other words, there are many solutions to the inverse problem that explains the same data. This ill-posed problem can be finessed by using prior information within a Bayesian framework. This research work discusses source reconstruction for EEG data using a Bayesian framework. In particular, MSP, LORETA and MNE are compared.
RESULTS: The results are compared in terms of variational free energy approximation to model evidence and in terms of variance accounted for in the sensor space. The results are taken for real time EEG data and synthetically generated EEG data at an SNR level of 10dB.
CONCLUSION: In brief, it was seen that MSP has the highest evidence and lowest localization error when compared to classical models. Furthermore, the plausibility and consistency of the source reconstruction speaks to the ability of MSP technique to localize active brain sources.