Displaying all 11 publications

Abstract:
Sort:
  1. Jothy SL, Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S
    Asian Pac J Cancer Prev, 2015;16(17):8015.
    PMID: 26625835
    Matched MeSH terms: Plants, Medicinal/metabolism*
  2. Fung SY, Cheong PCH, Tan NH, Ng ST, Tan CS
    IUBMB Life, 2019 07;71(7):821-826.
    PMID: 30629799 DOI: 10.1002/iub.2006
    Sclerotial powder of a cultivated species of the Tiger Milk Mushroom, Lignosus cameronensis was analysed for its nutritional components and compared against species of the same genus, Lignosus rhinocerus and Lignosus tigris. All three species have been used by indigenous tribes in Peninsular Malaysia as medicinal mushrooms. Content of carbohydrate, fibre, mineral, amino acid, palatable index, fat, ash and moisture were determined. L. cameronensis sclerotial material consists of carbohydrate (79.7%), protein (12.4%) and dietary fibre (5.4%) with low fat (1.7%) and no free sugar. It has the highest content of total carbohydrate (791 g kg-1 ), energy value (3,700 kcal kg-1 ) and calcium (0.85 g kg-1 ). The crude protein content (123 g kg-1 ) is comparable to that of L. rhinocerus with its main amino acids consisting of glutamic acid, aspartic acid and leucine. The umami index is determined to be 0.27. The total essential amino acid (45 g kg-1 ) is comparable to that of L. tigris. The main mineral is potassium (1.51 g kg-1 ) and the Na/K ratio was <0.6. Heavy metals such as mercury, cadmium, lead and arsenic were absent. L. cameronensis has the highest amount of food energy, total carbohydrate and calcium compared to those of both L. rhinocerus and L. tigris. The essential amino acids comprised almost 40% of the total amino acid content, slightly more than that reported from sclerotial powder of the L. tigris. © 2019 IUBMB Life, 9999(9999):1-6, 2019.
    Matched MeSH terms: Plants, Medicinal/metabolism*
  3. Khawory MH, Amat Sain A, Rosli MAA, Ishak MS, Noordin MI, Wahab HA
    Appl Radiat Isot, 2020 Mar;157:109013.
    PMID: 31889674 DOI: 10.1016/j.apradiso.2019.109013
    BACKGROUND AND AIM: The aim of this study is to evaluate the effects of gamma radiation treatment on three medicinal plants, namely Euodia malayana, Gnetum gnemon and Khaya senegalensis at two different forms; methanol leaf extracts and dried leaves respectively.

    EXPERIMENTAL PROCEDURE: The microbial limit test (MLT) studies indicated the suitable dosage of minimum and maximum gamma irradiation for leaf extracts as well as dried leaves of all the tested medicinal plants. Quantitative analysis of total phenolic content (TPC) analysis is based on calorimetric measurements determined using the Folin-Ciocalteu reagent with gallic acid (GA) used as the reference. In vitro cytotoxicity assay by using fibroblast (L929) cell lines was performed on each plant to determine the toxicity effect which sodium dodecyl sulfate (SDS) as the positive control. DPPH (2,2-diphenyl-1-picryl-hydrazyl) assay was conducted by using vitamin C and GA as the positive controls to determine the antioxidant property of each plant.

    RESULTS AND CONCLUSION: The MLT analysis indicated that the suitable dosage gamma irradiation for leaf extracts was 6-12 kGy and dried leaves were 9-13 kGy. The amount of GA concentration in each plant increased significantly from 30-51 mg GAE g-1 before treatment to 57-103 mg GAE g-1 after treatment with gamma radiation. This showed no significant effect of in vitro cytotoxicity activity before and after treatment with gamma irradiation in this study. Effective concentration (EC50) values of Khaya senegalensis plant reduced significantly (P ≤ 0.005) from 44.510 μg/ml before treatment to 24.691 μg/ml after treatment with gamma radiation, which indicate an increase of free radical scavenging activity.

    Matched MeSH terms: Plants, Medicinal/metabolism
  4. Foong LC, Chai JY, Ho ASH, Yeo BPH, Lim YM, Tam SM
    Sci Rep, 2020 09 30;10(1):16123.
    PMID: 32999341 DOI: 10.1038/s41598-020-72997-2
    Impatiens balsamina L. is a tropical ornamental and traditional medicinal herb rich in natural compounds, especially 2-methoxy-1,4-naphthoquinone (MNQ) which is a bioactive compound with tested anticancer activities. Characterization of key genes involved in the shikimate and 1,4-dihydroxy-2-naphthoate (DHNA) pathways responsible for MNQ biosynthesis and their expression profiles in I. balsamina will facilitate adoption of genetic/metabolic engineering or synthetic biology approaches to further increase production for pre-commercialization. In this study, HPLC analysis showed that MNQ was present in significantly higher quantities in the capsule pericarps throughout three developmental stages (early-, mature- and postbreaker stages) whilst its immediate precursor, 2-hydroxy-1,4-naphthoquinone (lawsone) was mainly detected in mature leaves. Transcriptomes of I. balsamina derived from leaf, flower, and three capsule developmental stages were generated, totalling 59.643 Gb of raw reads that were assembled into 94,659 unigenes (595,828 transcripts). A total of 73.96% of unigenes were functionally annotated against seven public databases and 50,786 differentially expressed genes (DEGs) were identified. Expression profiles of 20 selected genes from four major secondary metabolism pathways were studied and validated using qRT-PCR method. Majority of the DHNA pathway genes were found to be significantly upregulated in early stage capsule compared to flower and leaf, suggesting tissue-specific synthesis of MNQ. Correlation analysis identified 11 candidate unigenes related to three enzymes (NADH-quinone oxidoreductase, UDP-glycosyltransferases and S-adenosylmethionine-dependent O-methyltransferase) important in the final steps of MNQ biosynthesis based on genes expression profiles consistent with MNQ content. This study provides the first molecular insight into the dynamics of MNQ biosynthesis and accumulation across different tissues of I. balsamina and serves as a valuable resource to facilitate further manipulation to increase production of MNQ.
    Matched MeSH terms: Plants, Medicinal/metabolism
  5. Heskes AM, Sundram TCM, Boughton BA, Jensen NB, Hansen NL, Crocoll C, et al.
    Plant J, 2018 03;93(5):943-958.
    PMID: 29315936 DOI: 10.1111/tpj.13822
    Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus-castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus-castus. With the assistance of matrix-assisted laser desorption ionisation-mass spectrometry imaging (MALDI-MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome-specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus-castus. The identified CYP, VacCYP76BK1, was found to catalyse 16-hydroxylation of the diol-diterpene, peregrinol, to labd-13Z-ene-9,15,16-triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan- and lactone-containing diterpenoids that are present in this species.
    Matched MeSH terms: Plants, Medicinal/metabolism
  6. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Int J Mol Sci, 2012;13(1):393-408.
    PMID: 22312260 DOI: 10.3390/ijms13010393
    A split plot 3 by 4 experiment was designed to characterize the relationship between production of gluthatione (GSH), oxidized gluthatione (GSSG), total flavonoid, anthocyanin, ascorbic acid and antioxidant activities (FRAP and DPPH) in three varieties of Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under four levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) for 15 weeks. The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effects observed. As the nitrogen levels decreased from 270 to 0 kg N/ha, the production of GSH and GSSG, anthocyanin, total flavonoid and ascorbic acid increased steadily. At the highest nitrogen treatment level, L. pumila exhibited significantly lower antioxidant activities (DPPH and FRAP) than those exposed to limited nitrogen growing conditions. Significant positive correlation was obtained between antioxidant activities (DPPH and FRAP), total flavonoid, GSH, GSSG, anthocyanin and ascorbic acid suggesting that an increase in the antioxidative activities in L. pumila under low nitrogen fertilization could be attributed to higher contents of these compounds. From this observation, it could be concluded that in order to avoid negative effects on the quality of L. pumila, it is advisable to avoid excessive application of nitrogen fertilizer when cultivating the herb for its medicinal use.
    Matched MeSH terms: Plants, Medicinal/metabolism
  7. Swamy MK, Sinniah UR
    Molecules, 2015 May 12;20(5):8521-47.
    PMID: 25985355 DOI: 10.3390/molecules20058521
    Pogostemon cablin Benth. (patchouli) is an important herb which possesses many therapeutic properties and is widely used in the fragrance industries. In traditional medicinal practices, it is used to treat colds, headaches, fever, nausea, vomiting, diarrhea, abdominal pain, insect and snake bites. In aromatherapy, patchouli oil is used to relieve depression, stress, calm nerves, control appetite and to improve sexual interest. Till now more than 140 compounds, including terpenoids, phytosterols, flavonoids, organic acids, lignins, alkaloids, glycosides, alcohols, aldehydes have been isolated and identified from patchouli. The main phytochemical compounds are patchouli alcohol, α-patchoulene, β-patchoulene, α-bulnesene, seychellene, norpatchoulenol, pogostone, eugenol and pogostol. Modern studies have revealed several biological activities such as antioxidant, analgesic, anti-inflammatory, antiplatelet, antithrombotic, aphrodisiac, antidepressant, antimutagenic, antiemetic, fibrinolytic and cytotoxic activities. However, some of the traditional uses need to be verified and may require standardizing and authenticating the bioactivity of purified compounds through scientific methods. The aim of the present review is to provide comprehensive knowledge on the phytochemistry and pharmacological activities of essential oil and different plant extracts of patchouli based on the available scientific literature. This information will provide a potential guide in exploring the use of main active compounds of patchouli in various medical fields.
    Matched MeSH terms: Plants, Medicinal/metabolism*
  8. Abdullahi SA, Unyah NZ, Nordin N, Basir R, Nasir WM, Alapid AA, et al.
    Mini Rev Med Chem, 2020;20(9):739-753.
    PMID: 31660810 DOI: 10.2174/1389557519666191029105736
    Identification of drug target in protozoan T. gondii is an important step in the development of chemotherapeutic agents. Likewise, exploring phytochemical compounds effective against the parasite can lead to the development of new drug agent that can be useful for prophylaxis and treatment of toxoplasmosis. In this review, we searched for the relevant literature on the herbs that were tested against T. gondii either in vitro or in vivo, as well as different phytochemicals and their potential activities on T. gondii. Potential activities of major phytochemicals, such as alkaloid, flavonoid, terpenoids and tannins on various target sites on T. gondii as well as other related parasites was discussed. It is believed that the phytochemicals from natural sources are potential drug candidates for the treatment of toxoplasmosis with little or no toxicity to humans.
    Matched MeSH terms: Plants, Medicinal/metabolism
  9. Prabhu S, Vijayakumar S, Manogar P, Maniam GP, Govindan N
    Biomed Pharmacother, 2017 Aug;92:528-535.
    PMID: 28575810 DOI: 10.1016/j.biopha.2017.05.077
    Peroxisome proliferator-activated receptor gamma (PPARγ), a type II nuclear receptor present in adipose tissue, colon and macrophages. It reduces the hyperglycemia associated metabolic syndromes. Particularly, type II diabetes-related cardiovascular system risk in human beings. The fatty acid storage and glucose metabolism are regulated by PPARγ activation in human body. According to recent reports commercially available PPARγ activating drugs have been causing severe side effects. At the same time, natural products have been proved to be a promising area of drug discovery. Recently, many studies have been attempted to screen and identify a potential drug candidate to activate PPARγ. Hence, in this study we have selected some of the bio-active molecules from traditional medicinal plants. Molecular docking studies have been carried out against the target, PPARγ. We Results suggested that Punigluconin has a efficient docking score and it is found to have good binding affinities than other ligands. Hence, we concluded that Punigluconin is a better drug candidate for activation of PPARγ gene expression. Further studies are necessary to confirm their efficacy and possibly it can develop as a potential drug in future.
    Matched MeSH terms: Plants, Medicinal/metabolism
  10. Dwivedi MK, Shukla R, Sharma NK, Manhas A, Srivastava K, Kumar N, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114076.
    PMID: 33789139 DOI: 10.1016/j.jep.2021.114076
    ETHANOPHARMACOLOGICAL RELEVANCE: Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L. is medicinal plant possessing a variety of pharmaceutically important compounds. The plant is used traditionally worldwide for the treatment of malaria including India and Malaysia by the indigenous tribes. In vitro studies have reported the anti-malarial use of the plant in traditional medicinal systems.

    AIM OF THE STUDY: The aim of the current study is to evaluate the traditionally used medicinal plants for in vitro anti-malarial activity against human malaria parasite Plasmodium falciparum and profiling secondary metabolite using spectroscopic and chromatographic methods. Chemical profiling of active secondary metabolites in the extracts was undertaken using LC-MS.

    MATERIALS AND METHODS: Based on the ethno-botanical data V. negundo L. was selected for in vitro anti-malarial activity against P. falciparum chloroquine-sensitive (3D7) and multidrug resistant (K1) strains using SYBR Green-I based fluorescence assay. Cytotoxicity of extracts was evaluated in VERO cell line using the MTT assay. Haemolysis assay was performed using human red blood cells. Secondary metabolites profiling was undertaken using chromatographic and spectroscopic analysis. Liquid chromatography analysis was performed using a C18, 150 X 2.1, 2.6 μm column with gradient mobile phase Solvent A: 95% (H2O: ACN), Solvent B: Acetonitrile, Solvent C: Methanol, Solvent D: 5 mM NH4 in 95:5 (H2O: ACN) at a constant flow rate of 0.250 ml/min. The LC-MS spectra were acquired in both positive and negative ion modes with electrospray ionization (ESI) source.

    RESULTS: The anti-malarial active extract of V. negundo L. leaf exhibited potent anti-malarial activity with IC50 values of 7.21 μg/ml and 7.43 μg/ml against 3D7 and K1 strains, respectively with no evidence of significant cytotoxicity against mammalian cell line (VERO) and no toxicity as observed in haemolysis assay. The HPLC-LC-MS analysis of the extract led to identification of 73 compounds. We report for the first time the presence of Sabinene hydrate acetate, 5-Hydroxyoxindole, 2(3,4-dimethoxyphenyl)-6, 7-dimethoxychromen-4-one, Cyclotetracosa-1, 13-diene and 5, 7-Dimethoxyflavanone in the anti-malarial active extract of V. negundo L. leaf. Agnuside, Behenic acid and Globulol are some of the novel compounds with no reports of anti-malarial activity so far and require further evaluation in pure form for the development of potent anti-malarial compounds.

    CONCLUSIONS: The result report and scientifically validate the traditional use of V. negundo L. for the treatment of malaria providing new avenues for anti-malarial drug development. Several novel and unknown compounds were identified that need to be further characterized for anti-malarial potential.

    Matched MeSH terms: Plants, Medicinal/metabolism
  11. Ling AP, Tan KP, Hussein S
    J Zhejiang Univ Sci B, 2013 Jul;14(7):621-31.
    PMID: 23825148 DOI: 10.1631/jzus.B1200135
    OBJECTIVE: Labisia pumila var. alata, commonly known as 'Kacip Fatimah' or 'Selusuh Fatimah' in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila.

    METHODS: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L.

    RESULTS: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34 ± 19.55)% and (70.40 ± 14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00 ± 7.07)% and (77.78 ± 16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5 ± 5.0) and (30.0 ± 8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00 ± 0.00)%) that was obtained in 1 mg/L zeatin after (11.0 ± 2.8) d of culture.

    CONCLUSIONS: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs.

    Matched MeSH terms: Plants, Medicinal/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links