Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Zakaria ND, Yusof NA, Haron J, Abdullah AH
    Int J Mol Sci, 2009 Jan;10(1):354-65.
    PMID: 19333450 DOI: 10.3390/ijms10010354
    Molecular imprinted polymers (MIP) are considered one of the most promising selective and novel separation methods for removal phenolic compound in wastewater treatment. MIP are crosslinked polymeric materials that exhibit high binding capacity and selectivity towards a target molecule (template), purposely present during the synthesis process. In this work MIP were prepared in a bulk polymerization method in acetonitrile using 2,4-dinitrophenol, acrylamide, ethylene glycol dimethacrylate, and benzoyl peroxide as template, functional monomer, cross-linker and initiator, respectively. An adsorption process for removal of nitrophenol using the fabricated MIP was evaluated under various pH and time conditions. The parameters studied for 2,4-dinitrophenol includes adsorption kinetics, adsorption isotherm, and selectivity. The maximum adsorption of nitrophenol by the fabricated MIP was 3.50 mg/g. The adsorption of 2,4-dinitrophenol by the fabricated MIP was found effective at pH 6.0. A kinetics study showed that nitrophenol adsorption follows a second order adsorption rate and the adsorption isotherm data is explained well by the Langmuir model.
    Matched MeSH terms: Polymers/chemical synthesis*
  2. Abd Rashid MY, Abu Bakar A, Mohd Asri MT, Iskandar SM
    Med J Malaysia, 2004 May;59 Suppl B:135-6.
    PMID: 15468855
    Poly (p-phenylene vinylene) (PPV) was synthesized from p-xylylene bis(tetrahydrothiophenium chloride) using the Wessling route and characterized by Fourier Transform Infra-Red (FTIR) and UV-visible (UV-VIS) spectroscopic techniques. The significance of thermal treatment along with evolution of precursor polymer to polymer PPV was also studied through these spectroscopic techniques. Thermally Stimulated Current (TSC) measurements indicated the presence of crystallization, sulphonium group which occurred through the evolution from precursor polymer to polymer PPV during thermal treatment.
    Matched MeSH terms: Polymers/chemical synthesis*
  3. Deng E, Nguyen NT, Hild F, Hamilton IE, Dimitrakis G, Kingman SW, et al.
    Molecules, 2015 Nov 09;20(11):20131-45.
    PMID: 26569198 DOI: 10.3390/molecules201119681
    Macromolecules that possess three-dimensional, branched molecular structures are of great interest because they exhibit significantly differentiated application performance compared to conventional linear (straight chain) polymers. This paper reports the synthesis of 3- and 4-arm star branched polymers via ring opening polymerisation (ROP) utilising multi-functional hydroxyl initiators and Sn(Oct)2 as precatalyst. The structures produced include mono-functional hydrophobic and multi-functional amphiphilic core corona stars. The characteristics of the synthetic process were shown to be principally dependent upon the physical/dielectric properties of the initiators used. ROP's using initiators that were more available to become directly involved with the Sn(Oct)₂ in the "in-situ" formation of the true catalytic species were observed to require shorter reaction times. Use of microwave heating (MWH) in homopolymer star synthesis reduced reaction times compared to conventional heating (CH) equivalents, this was attributed to an increased rate of "in-situ" catalyst formation. However, in amphiphilic core corona star formation, the MWH polymerisations exhibited slower propagation rates than CH equivalents. This was attributed to macro-structuring within the reaction medium, which reduced the potential for reaction. It was concluded that CH experiments were less affected by this macro-structuring because it was disrupted by the thermal currents/gradients caused by the conductive/convective heating mechanisms. These gradients are much reduced/absent with MWH because it selectively heats specific species simultaneously throughout the entire volume of the reaction medium. These partitioning problems were overcome by introducing additional quantities of the species that had been determined to selectively heat.
    Matched MeSH terms: Polymers/chemical synthesis
  4. Asman S, Mohamad S, Sarih NM
    Int J Mol Sci, 2015;16(2):3656-76.
    PMID: 25667978 DOI: 10.3390/ijms16023656
    The molecularly imprinted polymer (MIP) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) monomer was synthesized for the purpose of selective recognition of benzylparaben (BzP). The MAA-β-CD monomer was produced by bridging a methacrylic acid (MAA) and β-cyclodextrin (β-CD) using toluene-2,4-diisocyanate (TDI) by reacting the -OH group of MAA and one of the primary -OH groups of β-CD. This monomer comprised of triple interactions that included an inclusion complex, π-π interaction, and hydrogen bonding. To demonstrate β-CD performance in MIPs, two MIPs were prepared; molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin, MIP(MAA-β-CD), and molecularly imprinted polymer-methacrylic acid, MIP(MAA); both prepared by a reversible addition fragmentation chain transfer polymerization (RAFT) in the bulk polymerization process. Both MIPs were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET). The presence of β-CD not only influenced the morphological structure, it also affected the specific surface area, average pore diameter, and total pore volume of the MIP. The rebinding of the imprinting effect was evaluated in binding experiments, which proved that the β-CD contributed significantly to the enhancement of the recognition affinity and selective adsorption of the MIP.
    Matched MeSH terms: Polymers/chemical synthesis
  5. Ongkudon CM, Kansil T, Wong C
    J Sep Sci, 2014 Mar;37(5):455-64.
    PMID: 24376196 DOI: 10.1002/jssc.201300995
    To date, the number of published reports on the large-volume preparation of polymer-based monolithic chromatography adsorbents is still lacking and is of great importance. Many critical factors need to be considered when manufacturing a large-volume polymer-based monolith for chromatographic applications. Structural integrity, validity, and repeatability are thought to be the key factors determining the usability of a large-volume monolith in a separation process. In this review, we focus on problems and solutions pertaining to heat dissipation, pore size distribution, "wall channel" effect, and mechanical strength in monolith preparation. A template-based method comprising sacrificial and nonsacrificial techniques is possibly the method of choice due to its precise control over the porous structure. However, additional expensive steps are usually required for the template removal. Other strategies in monolith preparation are also discussed.
    Matched MeSH terms: Polymers/chemical synthesis
  6. Gumel AM, Annuar MS, Chisti Y, Heidelberg T
    Ultrason Sonochem, 2012 May;19(3):659-67.
    PMID: 22105013 DOI: 10.1016/j.ultsonch.2011.10.016
    Ultrasonic irradiation greatly improved the Candida antarctica lipase B mediated ring opening polymerization of ε-caprolactone to poly-6-hydroxyhexanoate in the ionic liquid 1-ethyl-3-methylimidazolium tetraflouroborate. Compared to the conventional nonsonicated reaction, sonication improved the monomer conversion by 63% and afforded a polymer product of a narrower molecular weight distribution and a higher degree of crystallinity. Under sonication, the polydispersity index of the product was ~1.44 compared to a value of ~2.55 for the product of the conventional reaction. With sonication, nearly 75% of the monomer was converted to product, but the conversion was only ~16% for the reaction carried out conventionally. Compared to conventional operation, sonication enhanced the rate of polymer propagation by >2-fold and the turnover number of the lipase by >3-fold.
    Matched MeSH terms: Polymers/chemical synthesis*
  7. Zulfikar MA, Mohammad AW
    Med J Malaysia, 2004 May;59 Suppl B:141-2.
    PMID: 15468858
    Hybrid organic-inorganic membranes were fabricated using sol-gel technique using PMMA and TEOS with 80/20 (w/w) ratio at various solvents. The thin membrane films were then characterized using DSC and TGA. From DSC analysis, the Tg value of the PMMA moieties in hybrids membranes was in the order H-15-Toluene < Pure PMMA < H-15-THF < H-15-DMF. Furthermore, from TGA analysis it was found that the hybrid membranes have higher thermal stability compared to pure PMMA, and the type of solvents used play an important role in their degradation behavior.
    Matched MeSH terms: Polymers/chemical synthesis*
  8. Zaharani L, Khaligh NG, Mihankhah T, Johan MR
    Mol Divers, 2021 Feb;25(1):323-332.
    PMID: 32361887 DOI: 10.1007/s11030-020-10092-4
    This paper presents the efficient synthesis of 2-amino-4H-benzo[b]pyrans using mesoporous poly-melamine-formaldehyde as a polymeric heterogeneous catalyst. According to the principals of green chemistry, the reaction was performed by the planetary ball milling process at ambient and neat conditions. The heterogeneous catalyst could be reused up to five runs with no reducing of catalytic efficiency. A variety of substituted 2-amino-4H-benzo[b]pyrans were obtained in good to excellent yields under eco-friendly conditions. Other advantages of the current methodology include short reaction time, wide substrate-scope, and use of a metal-free polymeric catalyst. Also, the current method avoids the use of hazardous reagents and solvents, tedious workup and multi-step purification. This work revealed that porous organic polymers containing Lewis base sites having acceptor-donner hydrogen bonding functional groups, and high porosity could play a vital role in the promotion of the one-pot multicomponent reactions in the solid-phase synthesis.
    Matched MeSH terms: Polymers/chemical synthesis*
  9. Trakunjae C, Boondaeng A, Apiwatanapiwat W, Kosugi A, Arai T, Sudesh K, et al.
    Sci Rep, 2021 01 21;11(1):1896.
    PMID: 33479335 DOI: 10.1038/s41598-021-81386-2
    Poly-β-hydroxybutyrate (PHB) is a biodegradable polymer, synthesized as carbon and energy reserve by bacteria and archaea. To the best of our knowledge, this is the first report on PHB production by a rare actinomycete species, Rhodococcus pyridinivorans BSRT1-1. Response surface methodology (RSM) employing central composite design, was applied to enhance PHB production in a flask scale. A maximum yield of 3.6 ± 0.5 g/L in biomass and 43.1 ± 0.5 wt% of dry cell weight (DCW) of PHB were obtained when using RSM optimized medium, which was improved the production of biomass and PHB content by 2.5 and 2.3-fold, respectively. The optimized medium was applied to upscale PHB production in a 10 L stirred-tank bioreactor, maximum biomass of 5.2 ± 0.5 g/L, and PHB content of 46.8 ± 2 wt% DCW were achieved. Furthermore, the FTIR and 1H NMR results confirmed the polymer as PHB. DSC and TGA analysis results revealed the melting, glass transition, and thermal decomposition temperature of 171.8, 4.03, and 288 °C, respectively. In conclusion, RSM can be a promising technique to improve PHB production by a newly isolated strain of R. pyridinivorans BSRT1-1 and the properties of produced PHB possessed similar properties compared to commercial PHB.
    Matched MeSH terms: Polymers/chemical synthesis
  10. Rahman SKA, Yusof NA, Abdullah AH, Mohammad F, Idris A, Al-Lohedan HA
    PLoS One, 2018;13(4):e0195546.
    PMID: 29649325 DOI: 10.1371/journal.pone.0195546
    In the present study, ion imprinted polymer monoliths (IIPMs) were developed to overcome the limitations of ion imprinted polymer particles (IIPPs) used for the removal of Hg(II) ions from waste water samples. The adsorbents preparation, characterization and Hg(II) removal were very well reported. The IIPMs on porogen optimization was prepared using the molding technique with Hg(II) as a template ion, [2-(methacryloyloxy)ethyl]trimethylammonium cysteine (MAETC) as ligand, methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylamide (EGDMA) as cross-linker, benzoyl peroxide as an initiator and methanol and acetonitrile as porogen in the polypropylene tube (drinking straw) as mold. The IIPMs prepared with higher volumes of porogen were indicated to have a good adsorption rate for the Hg(II) removal along with good water permeability and larger porosity as compared to a lower volume of porogen. The IIPMs prepared using the binary porogen were able to improve the porosity and surface area of the monolithic polymers as compared to the single porogen added IIPMs. Finally, we indicate from our analysis that the IIPM having the efficient capacity for the Hg(II) ions is easy to prepare, and has higher water permeability along with high porosity and high adsorption capacity and all these factors making it one of the suitable adsorbent for the successful removal of Hg(II) ions.
    Matched MeSH terms: Polymers/chemical synthesis*
  11. Al-Mansob RA, Ismail A, Yusoff NI, Rahmat RA, Borhan MN, Albrka SI, et al.
    PLoS One, 2017;12(2):e0171648.
    PMID: 28182724 DOI: 10.1371/journal.pone.0171648
    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.
    Matched MeSH terms: Polymers/chemical synthesis
  12. Theivasanthi T, Anne Christma FL, Toyin AJ, Gopinath SCB, Ravichandran R
    Int J Biol Macromol, 2018 Apr 01;109:832-836.
    PMID: 29133091 DOI: 10.1016/j.ijbiomac.2017.11.054
    Nanocellulose prepared from the natural material has a promising wide range of opportunities to obtain the superior material properties towards various end-products. In this research, commercially available natural cotton was treated with aqueous sodium hydroxide solution to eliminate the hemicellulose and lignin, then cellulose was collected. The collected cellulose was subjected to acid hydrolysis using sulfuric acid to obtain nanocellulose. The prepared nanocellulose was further characterized with the aid of Fourier transform infrared spectroscopy, X-ray diffraction and Scanning Electron Microscopy to elucidate the chemical structure, crystallinity and the morphology.
    Matched MeSH terms: Polymers/chemical synthesis
  13. Tan KX, Danquah MK, Sidhu A, Yon LS, Ongkudon CM
    Curr Drug Targets, 2018 02 08;19(3):248-258.
    PMID: 27321771 DOI: 10.2174/1389450117666160617120926
    BACKGROUND: The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability.

    OBJECTIVE: The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release.

    RESULTS: This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects.

    CONCLUSION: A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with stage-wise delivery mechanism is presented to illustrate the potential efficacy of aptamer- polymer cargos for enhanced cell targeting and drug delivery.

    Matched MeSH terms: Polymers/chemical synthesis*
  14. Mehrali M, Moghaddam E, Shirazi SF, Baradaran S, Mehrali M, Latibari ST, et al.
    ACS Appl Mater Interfaces, 2014 Mar 26;6(6):3947-62.
    PMID: 24588873 DOI: 10.1021/am500845x
    Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.
    Matched MeSH terms: Polymers/chemical synthesis
  15. Latfi ASA, Pramanik S, Poon CT, Gumel AM, Lai KW, Annuar MSM, et al.
    J Biomater Appl, 2019 01;33(6):854-865.
    PMID: 30458659 DOI: 10.1177/0885328218812490
    Natural biopolymers have many attractive medical applications; however, complications due to fibrosis caused a reduction in diffusion and dispersal of nutrients and waste products. Consequently, severe immunocompatibility problems and poor mechanical and degradation properties in synthetic polymers ensue. Hence, the present study investigates a novel hydrogel material synthesized from caprolactone, ethylene glycol, ethylenediamine, polyethylene glycol, ammonium persulfate, and tetramethylethylenediamine via chemo-enzymatic route. Spectroscopic analyses indicated the formation of polyurea and polyhydroxyurethane as the primary building block of the hydrogel starting material. Biocompatibility studies showed positive observation in biosafety test using direct contact cytotoxicity assay in addition to active cellular growth on the hydrogel scaffold based on fluorescence observation. The synthesized hydrogel also exhibited (self)fluorescence properties under specific wavelength excitation. Hence, synthesized hydrogel could be a potential candidate for medical imaging as well as tissue engineering applications as a tissue expander, coating material, biosensor, and drug delivery system.
    Matched MeSH terms: Polymers/chemical synthesis
  16. Ashley J, Shukor Y, D'Aurelio R, Trinh L, Rodgers TL, Temblay J, et al.
    ACS Sens, 2018 02 23;3(2):418-424.
    PMID: 29333852 DOI: 10.1021/acssensors.7b00850
    Food recalls due to undeclared allergens or contamination are costly to the food manufacturing industry worldwide. As the industry strives for better manufacturing efficiencies over a diverse range of food products, there is a need for the development of new analytical techniques to improve monitoring of the presence of unintended food allergens during the food manufacturing process. In particular, the monitoring of wash samples from cleaning in place systems (CIP), used in the cleaning of food processing equipment, would allow for the effective removal of allergen containing ingredients in between food batches. Casein proteins constitute the biggest group of proteins in milk and hence are the most common milk protein allergen in food ingredients. As such, these proteins could present an ideal analyte for cleaning validation. In this work, molecularly imprinted polymer nanoparticles (nanoMIPs) with high affinity toward bovine α-casein were synthesized using a solid-phase imprinting method. The nanoMIPs were then characterized and incorporated into label free surface plasmon resonance (SPR) based sensor. The nanoMIPs demonstrated good binding affinity and selectivity toward α-casein (KD ∼ 10 × 10-9 M). This simple affinity sensor demonstrated the quantitative detection of α-casein achieving a detection limit of 127 ± 97.6 ng mL-1 (0.127 ppm) which is far superior to existing commercially available ELISA kits. Recoveries from spiked CIP wastewater samples were within the acceptable range (87-120%). The reported sensor could allow food manufacturers to adequately monitor and manage food allergen risk in food processing environments while ensuring that the food produced is safe for the consumer.
    Matched MeSH terms: Polymers/chemical synthesis*
  17. Tan JM, Karthivashan G, Abd Gani S, Fakurazi S, Hussein MZ
    J Mater Sci Mater Med, 2016 Feb;27(2):26.
    PMID: 26704543 DOI: 10.1007/s10856-015-5635-8
    Chemically functionalized carbon nanotubes are highly suitable and promising materials for potential biomedical applications like drug delivery due to their distinct physico-chemical characteristics and unique architecture. However, they are often associated with problems like insoluble in physiological environment and cytotoxicity issue due to impurities and catalyst residues contained in the nanotubes. On the other hand, surface coating agents play an essential role in preventing the nanoparticles from excessive agglomeration as well as providing good water dispersibility by replacing the hydrophobic surfaces of nanoparticles with hydrophilic moieties. Therefore, we have prepared four types of biopolymer-coated single walled carbon nanotubes systems functionalized with anticancer drug, betulinic acid in the presence of Tween 20, Tween 80, polyethylene glycol and chitosan as a comparative study. The Fourier transform infrared spectroscopy studies confirm the bonding of the coating molecules with the SWBA and these results were further supported by Raman spectroscopy. All chemically coated samples were found to release the drug in a slow, sustained and prolonged fashion compared to the uncoated ones, with the best fit to pseudo-second order kinetic model. The cytotoxic effects of the synthesized samples were evaluated in mouse embryonic fibroblast cells (3T3) at 24, 48 and 72 h. The in vitro results reveal that the cytotoxicity of the samples were dependent upon the drug release profiles as well as the chemical components of the surface coating agents. In general, the initial burst, drug release pattern and cytotoxicity could be well-controlled by carefully selecting the desired materials to suit different therapeutic applications.
    Matched MeSH terms: Polymers/chemical synthesis
  18. Rehman K, Mohd Amin MC, Zulfakar MH
    J Oleo Sci, 2014;63(10):961-70.
    PMID: 25252741
    Polymer-Fish oil bigel (hydrogel/oleogel colloidal mixture) was developed by using fish oil and natural (sodium alginate) and synthetic (hydroxypropyl methylcellulose) polymer for pharmaceutical purposes. The bigels were closely monitored and thermal, rheological and mechanical properties were compared with the conventional hydrogels for their potential use as an effective transdermal drug delivery vehicle. Stability of the fish oil fatty acids (especially eicosapentanoic acid, EPA and docosahexanoic acid, DHA) was determined by gas chromatography and the drug content (imiquimod) was assessed with liquid chromatography. Furthermore, in vitro permeation study was conducted to determine the capability of the fish oil-bigels as transdermal drug delivery vehicle. The bigels showed pseudoplastic rheological features, with excellent mechanical properties (adhesiveness, peak stress and hardness), which indicated their excellent spreadability for application on the skin. Bigels prepared with mixture of sodium alginate and fish oil (SB1 and SB2), and the bigels prepared with the mixture of hydroxypropyl methylcellulose and fish oil (HB1-HB3) showed high cumulative permeation and drug flux compared to hydrogels. Addition of fish oil proved to be beneficial in increasing the drug permeation and the results were statistically significant (p < 0.05, one-way Anova, SPSS 20.0). Thus, it can be concluded that bigel formulations could be used as an effective topical and transdermal drug delivery vehicle for pharmaceutical purposes.
    Matched MeSH terms: Polymers/chemical synthesis*
  19. Komarasamy TV, Sekaran SD
    J Oleo Sci, 2012;61(4):227-39.
    PMID: 22450124
    Melanoma incidence and mortality have risen dramatically in recent years. No effective treatment for metastatic melanoma exists; hence currently, an intense effort for new drug evaluation is being carried out. In this study, we investigated the effects of a palm oil-derived nanopolymer called Bio-12 against human malignant melanoma. The nanopolymers of Bio-12 are lipid esters derived from a range of fatty acids of palm oil. Our study aims to identify the anti-proliferative properties of Bio-12 against human malignant melanoma cell line (MeWo) and to elucidate the mode of actions whereby Bio-12 brings about cell death. Bio-12 significantly inhibited the growth of MeWo cells in a concentration- and time- dependent manner with a median inhibitory concentration (IC₅₀) value of 1/25 dilution after 72 h but was ineffective on human normal skin fibroblasts (CCD-1059sk). We further investigated the mode of actions of Bio-12 on MeWo cells. Cell cycle flow cytometry demonstrated that MeWo cells treated with increasing concentrations of Bio-12 resulted in S-phase arrest, accompanied by the detection of sub-G1 content, indicative of apoptotic cell death. Induction of apoptosis was further confirmed via caspase (substrate) cleavage assay which showed induction of early apoptosis in MeWo cells. In addition, DNA strand breaks which are terminal event in apoptosis were evident through increase of TUNEL positive cells and formation of a characteristic DNA ladder on agarose gel electrophoresis. Moreover, treatment of MeWo cells with Bio-12 induced significant increase in lactate dehydrogenase (LDH) activity. These results show that Bio-12 possesses the ability to suppress proliferation of human malignant melanoma MeWo cells and this suppression is at least partly attributed to the initiation of the S-phase arrest, apoptosis and necrosis, suggesting that it is indeed worth for further investigations.
    Matched MeSH terms: Polymers/chemical synthesis
  20. Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ
    Sci Rep, 2020 12 10;10(1):21704.
    PMID: 33303818 DOI: 10.1038/s41598-020-78601-x
    Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
    Matched MeSH terms: Polymers/chemical synthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links