RESULTS: A novel α-amylase (AmyA1) containing an open reading frame of 1482 bp was cloned from Antarctic psychrotolerant fungus G. pannorum and then expressed in the newly constructed Aspergillus oryzae system. The purified recombinant AmyA1 was approximate 52 kDa. AmyA1 was optimally active at pH 5.0 and 40 °C, and retained over 20% of maximal activity at 0-20 °C. The K m and V max values toward soluble starch were 2.51 mg/mL and 8.24 × 10-2 mg/(mL min) respectively, with specific activity of 12.8 × 103 U/mg. AmyA1 presented broad substrate specificity, and the main hydrolysis products were glucose, maltose, and maltotetraose. The influence of AmyA1 on the quality of bread was further investigated. The application study shows a 26% increase in specific volume, 14.5% increase in cohesiveness and 14.1% decrease in gumminess in comparison with the control. AmyA1 was immobilized on magnetic nanoparticles and characterized. The immobilized enzyme showed improved thermostability and enhanced pH tolerance under neutral conditions. Also, magnetically immobilized AmyA1 can be easily recovered and reused for maximum utilization.
CONCLUSIONS: A novel α-amylase (AmyA1) from Antarctic psychrotolerant fungus was cloned, heterologous expression in Aspergillus oryzae, and characterized. The detailed report of the enzymatic properties of AmyA1 gives new insights into fungal cold-adapted amylase. Application study showed potential value of AmyA1 in the food and starch fields. In addition, AmyA1 was immobilized on magnetic nanoparticles and characterized. The improved stability and longer service life of AmyA1 could potentially benefit industrial applications.
Survey methodology and objectives: A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries.
Conclusions: Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.