RESULTS: In this study, the alignment analysis based on structural similarity allows the prediction of 48 potential interactions between 27 human RPs and the EBV proteins EBNA1, LMP1, LMP2A, and LMP2B. Gene ontology analysis of the putative protein-protein interactions (PPIs) reveals their probable involvement in RNA binding, ribosome biogenesis, metabolic and biosynthetic processes, and gene regulation. Pathway analysis shows their possible participation in viral infection strategies (viral translation), as well as oncogenesis (Wnt and EGFR signalling pathways). Finally, our molecular docking assay predicts the functional interactions of EBNA1 with four RPs individually: EBNA1-eS10, EBNA1-eS25, EBNA1-uL10 and EBNA1-uL11.
CONCLUSION: These interactions have never been revealed previously via either experimental or in silico approach. We envisage that the calculated interactions between the ribosomal and EBV proteins herein would provide a hypothetical model for future experimental studies on the functional relationship between ribosomal proteins and EBV infection.
METHODS: In total, 7541 organisms causing documented infections were consecutively collected in 66 centres in 33 countries, excluding the USA. Susceptibility testing was performed by broth microdilution. Isolates displaying linezolid MIC results of ≥4 mg/L were molecularly characterized.
RESULTS: Linezolid inhibited all Staphylococcus aureus at ≤2 mg/L, with MIC50 results of 1 mg/L, regardless of methicillin resistance. A similar linezolid MIC50 result (i.e. 0.5 mg/L) was observed against CoNS, with the vast majority of isolates (99.4%) also inhibited at ≤2 mg/L. Six CoNS that exhibited elevated linezolid MIC values were found to contain alterations in the 23S rRNA and/or L3 ribosomal protein. Linezolid exhibited consistent modal MIC and MIC50 results (1 mg/L) against enterococci, regardless of species or vancomycin resistance. Three Enterococcus faecalis from Galway and Dublin (Ireland) and Kelantan (Malaysia) showed MIC results of 4 to 8 mg/L and carried optrA. All Streptococcus pneumoniae, viridans-group streptococci and β-haemolytic streptococci were inhibited by linezolid at ≤2, ≤2 and ≤1 mg/L, respectively, with equivalent MIC90 results (1 mg/L for all groups).
CONCLUSIONS: These results document the continued long-term and stable in vitro potency of linezolid and reveal a limited number of isolates with decreased susceptibility to linezolid (i.e. MIC ≥4 mg/L). The latter isolates primarily showed mutations in the 23S rRNA gene and/or L3 protein, but cfr was not detected. Moreover, this study shows that isolates carrying the newly described ABC transporter optrA are not restricted to China.