Displaying all 8 publications

Abstract:
Sort:
  1. Lee WS, Chew KS, Ng RT, Kasmi KE, Sokol RJ
    Hepatol Int, 2020 May;14(3):305-316.
    PMID: 32356227 DOI: 10.1007/s12072-020-10048-8
    Premature infants and children with intestinal failure (IF) or short bowel syndrome are susceptible to intestinal failure-associated liver disease (IFALD, previously referred to as parenteral nutrition-associated liver disease, or PNALD). IFALD in children is characterized by progressive cholestasis and biliary fibrosis, and steatohepatitis in adults, and is seen in individuals dependent upon prolonged administration of PN. Many factors have been proposed as contributing to the pathogenesis of IFALD. In recent years, the focus has been on the potential synergistic roles of the intestinal microbiome, increased intestinal permeability, activation of hepatic innate immune pathways, and the use of intravenous soybean-oil-based intravenous lipid emulsions (SO-ILE). In vitro and in vivo studies have identified stigmasterol, a component of the plant sterols present in SO-ILE, as playing an important role. Although various strategies have been adopted to prevent or reverse IFALD, most suffer from a lack of strong evidence supported by well-designed, prospective clinical trials with clearly defined endpoints. Reduction in the amount of SO-ILEs or replacement with non-SO-ILEs has been shown to reverse IFALD although safety and long-term effectiveness have not been studied. Medical and surgical modalities to increase intestinal adaptation, advance enteral feedings, and prevent central line bloodstream infections are also important preventative strategies. There is a continued need to conduct high-quality, prospective trials with clearly define outcome measures to ascertain the potential benefits of these strategies.
    Matched MeSH terms: Soybean Oil/pharmacology
  2. Ima-Nirwana S, Ahmad SN, Yee LJ, Loh HC, Yew SF, Norazlina M, et al.
    Singapore Med J, 2007 Mar;48(3):200-6.
    PMID: 17342287
    The short-term and long- term effects of heated soy oil on bone metabolism in ovariectomised Sprague-Dawley rats were studied.
    Matched MeSH terms: Soybean Oil/pharmacology*
  3. Royan M, Meng GY, Othman F, Sazili AQ, Navidshad B
    Int J Mol Sci, 2011;12(12):8581-95.
    PMID: 22272093 DOI: 10.3390/ijms12128581
    An experiment was conducted on broiler chickens to study the effects of different dietary fats (Conjugated linoleic acid (CLA), fish oil, soybean oil, or their mixtures, as well as palm oil, as a more saturated fat), with a as fed dose of 7% for single fat and 3.5 + 3.5% for the mixtures, on Peroxisome Proliferator-Activated Receptors (PPARs) gene expression and its relation with body fat deposits. The CLA used in this experiment was CLA LUTA60 which contained 60% CLA, so 7% and 3.5% dietary inclusions of CLA LUTA60 were equal to 4.2% and 2.1% CLA, respectively. Higher abdominal fat pad was found in broiler chickens fed with a diet containing palm oil compared to chickens in the other experimental groups (P ≤ 0.05). The diets containing CLA resulted in an increased fat deposition in the liver of broiler chickens (P ≤ 0.05). The only exception was related to the birds fed with diets containing palm oil or fish oil + soybean oil, where contents of liver fat were compared to the CLA + fish oil treatment. PPARγ gene in adipose tissue of chickens fed with palm oil diet was up-regulated compared to other treatments (P ≤ 0.001), whereas no significant differences were found in adipose PPARγ gene expression between chickens fed with diets containing CLA, fish oil, soybean oil or the mixture of these fats. On the other hand, the PPARα gene expression in liver tissue was up-regulated in response to the dietary fish oil inclusion and the differences were also significant for both fish oil and CLA + fish oil diets compared to the diets with palm oil, soybean oil or CLA as the only oil source (P ≤ 0.001). In conclusion, the results of present study showed that there was a relationship between the adipose PPARγ gene up-regulation and abdominal fat pad deposition for birds fed with palm oil diet, while no deference was detected in n-3 and n-6 fatty acids, as well as CLA on PPARγ down regulation in comparison to a more saturated fat. When used on its own, fish oil was found to be a more effective fat in up-regulating hepatic PPARα gene expression and this effect was related to a less fat deposition in liver tissue. A negative correlation coefficient (-0.3) between PPARα relative gene expression and liver tissue fat content confirm the anti-lipogenic effect of PPARα, however, the change in these parameters was not completely parallel.
    Matched MeSH terms: Soybean Oil/pharmacology*
  4. Adam SK, Das S, Othman F, Jaarin K
    Clinics (Sao Paulo), 2009;64(11):1113-9.
    PMID: 19936186 DOI: 10.1590/S1807-59322009001100012
    To observe the effects of consuming repeatedly heated soy oil on the aortic tissues of estrogen-deficient rats.
    Matched MeSH terms: Soybean Oil/pharmacology*
  5. Jaarin K, Mustafa MR, Leong XF
    Clinics (Sao Paulo), 2011;66(12):2125-32.
    PMID: 22189740
    OBJECTIVES: The goal of this study was to determine the possible mechanism that is involved in the blood pressure-raising effect of heated vegetable oils.

    METHODS: Adult male Sprague-Dawley rats were divided into 11 groups; the control group was fed with rat chow, and the other groups were fed with chow that was mixed with 15% weight/weight palm or soy oils, which were either in a fresh form or heated once, twice, five, or ten times. Blood pressures were measured at the baseline and throughout the 24-week study. Plasma nitric oxide levels were assessed prior to treatment and at the end of the study. Following 24 weeks, the rats were sacrificed to investigate their vascular reactivity using the thoracic aorta.

    RESULTS: Palm and soy oils had no detrimental effects on blood pressure, and they significantly elevated the nitric oxide contents and reduced the contractile responses to phenylephrine. However, trials using palm and soy oils that were repeatedly heated showed an increase in blood pressure, enhanced phenylephrine-induced contractions, reduced acetylcholine- and sodium nitroprusside-induced relaxations relative to the control and rats that were fed fresh vegetable oils.

    CONCLUSIONS: The blood pressure-raising effect of the heated vegetable cooking oils is associated with increased vascular reactivity and a reduction in nitric oxide levels. The chronic consumption of heated vegetable oils leads to disturbances in endogenous vascular regulatory substances, such as nitric oxide. The thermal oxidation of the cooking oils promotes the generation of free radicals and may play an important contributory role in the pathogenesis of hypertension in rats.

    Matched MeSH terms: Soybean Oil/pharmacology*
  6. Idris CA, Sundram K
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S408-15.
    PMID: 12492627
    Nine cynomolgus monkeys were rotated randomly through four dietary treatments with each treatment lasting 6 weeks. A wash-out period of 4 weeks was maintained between each dietary rotation. The animals were fed diets containing 32% energy fat derived from palm olein (POL), lauric-myristic-rich oil blend (LM), American Heart Association (AHA) rich oil blend and hydrogenated soybean oil blend (trans). Diets were fed with (phase 1) or without (phase 2) the addition of dietary cholesterol (0.1%). In phase 1, when animals were fed without dietary cholesterol, plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) was significantly raised and high-density lipoprotein cholesterol (HDL-C) was significantly depressed by the trans diets relative to all other dietary treatments. The resulting LDL-C/HDL-C ratio was also significantly increased. The LM diet increased TC significantly relative to the AHA diet while LDL-C was significantly increased compared to both POL and AHA. Apolipoprotein (apo) B was not affected significantly by these dietary treatments. Apo A1 was significantly increased by POL relative to all other dietary treatments. The trans diet reduced apo A1 and the resulting apo B/A1 ratio was increased significantly by trans relative to all other dietary treatments. Addition of 0.1% dietary cholesterol to these diets almost doubled the plasma TC and LDL-C in all dietary treatments. However, HDL-C was only marginally higher with the addition of dietary cholesterol. The LM + C (cholesterol added) diet resulted in the highest TC and LDL-C that was significant compared to all other dietary treatments. Trans + C increased TC compared to POL + C and AHA + C diets while increases in the LDL-C did not attain significance. The addition of dietary cholesterol did not affect HDL-C between treatments whereas plasma triglycerides were significantly increased by the trans + C diet relative to all other treatments. Both the trans + C and LM + C diets increased apo B and decreased apo A1 relative to the POL + C and AHA + C diets. The resulting apo B/A1 ratio was similarly altered. These results affirm that the lauric + myristic acid combination, along with trans fatty acids, increased lipoprotein-associated coronary heart disease risk factors compared to either POL or AHA.
    Matched MeSH terms: Soybean Oil/pharmacology*
  7. Shuid AN, Chuan LH, Mohamed N, Jaarin K, Fong YS, Soelaiman IN
    Asia Pac J Clin Nutr, 2007;16(3):393-402.
    PMID: 17704019
    Palm oil is shown to have antioxidant, anticancer and cholesterol lowering effects. It is resistant to oxidation when heated compared to other frying oils such as soy oil. When a frying oil is heated repeatedly, it forms toxic degradation products, such as aldehydes which when consumed, may be absorbed into the systemic circulation. We have studied the effects of taking soy or palm oil that were mixed with rat chow on the bone histomorphometric parameters of ovariectomised rats. Female Sprague-Dawley rats were divided into eight groups: (1) normal control group; (2) ovariectomised-control group; (3) ovariectomised and fresh soy oil; (4) ovariectomised and soy oil heated once; (5) ovariectomised and soy oil heated five times; (6) ovariectomised and fresh palm oil; (7) ovariectomised and palm oil heated once; (8) ovariectomised and palm oil heated five times. These oils were mixed with rat chow at weight ratio of 15:100 and were given to the rats daily for six months. Ovariectomy had caused negative effects on the bone histomorphometric parameters. Ingestion of both fresh and once-heated oils, were able to offer protections against the negative effects of ovariectomy, but these protections were lost when the oils were heated five times. Soy oil that was heated five times actually worsens the histomorphometric parameters of ovariectomised rats. Therefore, it may be better for postmenopausal who are at risk of osteoporosis to use palm oil as frying oil especially if they practice recycling of frying oils.
    Matched MeSH terms: Soybean Oil/pharmacology*
  8. Tekeleselassie AW, Goh YM, Rajion MA, Motshakeri M, Ebrahimi M
    ScientificWorldJournal, 2013;2013:757593.
    PMID: 24294136 DOI: 10.1155/2013/757593
    This study was aimed to investigate the effects of dietary fatty acids on the accretion pattern of major fat pads, inguinal fat cellularity, and their relation with plasma leptin concentration. Forty Sprague-Dawley rats were randomly assigned into four groups and received the following diets for 22 weeks: (1) standard rat chow diet (CTRL), (2) CTRL + 10% (w/w) butter (HFAR), (3) CTRL + 3.33% (w/w) menhaden fish oil + 6.67% (w/w) soybean oil (MFAR), and (4) CTRL + 6.67% (w/w) menhaden fish oil + 3.33% (w/w) soybean oil (LFAR). Inguinal fat cellularity and plasma leptin concentration were measured in this study. Results for inguinal fat cellularity showed that the mean adipocyte number for the MFAR (9.2 ∗ 10⁵ ± 3.6) and LFAR (8.5 ∗ 10⁵ ± 5.1) groups was significantly higher (P < 0.05) than the rest, while the mean adipocyte diameter of HFAR group was larger (P < 0.05) (46.2 ± 2.8) than the rest. The plasma leptin concentration in the HFAR group was higher (P < 0.05) (3.22 ± 0.32 ng/mL), than the other groups. The higher inguinal fat cellularity clearly indicated the ability of the polyunsaturated fatty acids (PUFA) and butter supplemented diets to induce hyperplasia and hypertrophy of fat cells, respectively, which caused adipocyte remodeling due to hyperleptinemia.
    Matched MeSH terms: Soybean Oil/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links