Displaying all 10 publications

Abstract:
Sort:
  1. Zheng W, Tan TK, Paterson IC, Mutha NV, Siow CC, Tan SY, et al.
    PLoS One, 2016;11(5):e0151908.
    PMID: 27138013 DOI: 10.1371/journal.pone.0151908
    The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.
    Matched MeSH terms: Streptococcus mitis/genetics*
  2. Fathilah, A.R., Othman, Y., Rahim, Z.H.A.
    Ann Dent, 1999;6(1):-.
    MyJurnal
    Chlorhexidine gluconate and hexitidine have been used in many oral health care products as antiplaque and antigingivitis agents. Based on the clinical observations and the plaque and gingivitis scores, chlorhexidine gluconate has been reported to be a better agent. In this study, the anti-adherence properties of chlorhexidine gluconate and hexitidine on individual bacteria strains isolated from a 3-hour plaque (Streptococcus sanguis, Streptococcus mitis 1 and Actinomyces sp.) and on a whole 6-hour plaque culture were determined and compared. The study showed that chlorhexidine gluconate inhibited almost 100 % the adherence of the individual bacteria strains and 87.7 % the adherence of a whole 6-hour plaque culture to the saliva-coated glass surface. Hexitidine appeared to be more selective in its effect. It was shown to inhibit the adherence of S. sanguis and Actinomyces sp. to saliva-coated glass surface by 86.5 % and 51.4 % respectively. Its effect on the S. mitis 1 strains is comparable to that of a whole 6-hour plaque culture where inhibition to adherence were less than 4 % for both.
    Matched MeSH terms: Streptococcus mitis
  3. Khosravi Y, Dieye Y, Loke MF, Goh KL, Vadivelu J
    PLoS One, 2014;9(11):e112214.
    PMID: 25386948 DOI: 10.1371/journal.pone.0112214
    Helicobacter pylori (H. pylori) is a major gastric pathogen that has been associated with humans for more than 60,000 years. H. pylori causes different gastric diseases including dyspepsia, ulcers and gastric cancers. Disease development depends on several factors including the infecting H. pylori strain, environmental and host factors. Another factor that might influence H. pylori colonization and diseases is the gastric microbiota that was overlooked for long because of the belief that human stomach was a hostile environment that cannot support microbial life. Once established, H. pylori mainly resides in the gastric mucosa and interacts with the resident bacteria. How these interactions impact on H. pylori-caused diseases has been poorly studied in human. In this study, we analyzed the interactions between H. pylori and two bacteria, Streptococcus mitis and Lactobacillus fermentum that are present in the stomach of both healthy and gastric disease human patients. We have found that S. mitis produced and released one or more diffusible factors that induce growth inhibition and coccoid conversion of H. pylori cells. In contrast, both H. pylori and L. fermentum secreted factors that promote survival of S. mitis during the stationary phase of growth. Using a metabolomics approach, we identified compounds that might be responsible for the conversion of H. pylori from spiral to coccoid cells. This study provide evidences that gastric bacteria influences H. pylori physiology and therefore possibly the diseases this bacterium causes.
    Matched MeSH terms: Streptococcus mitis/physiology*
  4. Razak FA, Othman RY, Rahim ZH
    J Oral Sci, 2006 Jun;48(2):71-5.
    PMID: 16858135
    The adhesion of early settlers of dental plaque to the tooth surface has a role in the initiation of the development of dental plaque. The hydrophobic surface properties of the bacteria cell wall are indirectly responsible for the adhesion of the bacteria cell to the acquired pellicle on the tooth surfaces. In this study, the effect of aqueous extract of two plants (Psidium guajava and Piper betle) on the cell-surface hydro-phobicity of early settlers of dental plaque was determined in vitro. Hexadecane, a hydrocarbon was used to represent the hydrophobic surface of the teeth in the oral cavity. It was found that treatment of the early plaque settlers with 1 mg/ml extract of Psidium guajava reduced the cell-surface hydrophobicity of Strep. sanguinis, Strep. mitis and Actinomyces sp. by 54.1%, 49.9% and 40.6%, respectively. Treatment of these bacteria with the same concentration of Piper betle however, showed a comparatively lesser effect (< 10%). It was also observed that the anti-adhesive effect of the two extracts on the binding of the early plaque settlers to hexadecane is concentration dependent.
    Matched MeSH terms: Streptococcus mitis/drug effects; Streptococcus mitis/physiology
  5. Abdulbaqi HR, Himratul-Aznita WH, Baharuddin NA
    Arch Oral Biol, 2016 Oct;70:117-124.
    PMID: 27343694 DOI: 10.1016/j.archoralbio.2016.06.011
    OBJECTIVE: Green tea (Gt), leafs of Camellia sinensis var. assamica, is widely consumed as healthy beverage since thousands of years in Asian countries. Chewing sticks (miswak) of Salvadora persica L. (Sp) are traditionally used as natural brush to ensure oral health in developing countries. Both Gt and Sp extracts were reported to have anti-bacterial activity against many dental plaque bacteria. However, their combination has never been tested to have anti-bacterial and anti-adherence effect against primary dental plaque colonizers, playing an initial role in the dental plaque development, which was investigated in this study.

    METHODS: Two-fold serial micro-dilution method was used to measure minimal inhibitory concentration (MIC) of aqueous extracts of Gt, Sp and their combinations. Adsorption to hexadecane was used to determine the cell surface hydrophobicity (CSH) of bacterial cells. Glass beads were used to mimic the hard tissue surfaces, and were coated with saliva to develop experimental pellicles for the adhesion of the primary colonizing bacteria.

    RESULTS: Gt aqueous extracts exhibited better anti-plaque effect than Sp aqueous extracts. Their combination, equivalent to 1/4 and 1/2 of MIC values of Gt and Sp extracts respectively, showed synergistic anti-plaque properties with fractional inhibitory concentration (FIC) equal to 0.75. This combination was found to significantly reduce CSH (p<0.05) and lower the adherence ability (p<0.003) towards experimental pellicles.

    CONCLUSION: Combination between Gt and Sp aqueous extracts exhibited synergistic anti-plaque activity, and could be used as a useful active agent to produce oral health care products.

    Matched MeSH terms: Streptococcus mitis/drug effects*; Streptococcus mitis/physiology
  6. Abdul Razak F, Baharuddin BA, Akbar EFM, Norizan AH, Ibrahim NF, Musa MY
    Arch Oral Biol, 2017 Aug;80:180-184.
    PMID: 28448807 DOI: 10.1016/j.archoralbio.2017.04.014
    OBJECTIVE: Compact-structured oral biofilm accumulates acids that upon prolonged exposure to tooth surface, causes demineralisation of enamel. This study aimed to assess the effect of alternative sweeteners Equal Stevia(®), Tropicana Slim(®), Pal Sweet(®) and xylitol on the matrix-forming activity of plaque biofilm at both the early and established stages of formation.

    METHODS: Saliva-coated glass beads (sGB) were used as substratum for the adhesion of a mixed-bacterial suspension of Streptococcus mutans, Streptococcus sanguinis and Streptococcus mitis. Biofilms formed on sGB at 3h and 24h represented the early and established-plaque models. The biofilms were exposed to three doses of the sweeteners (10%), introduced at three intervals to simulate the exposure of dental plaque to sugar during three consecutive food intakes. The treated sGB were (i) examined under the SEM and (ii) collected for turbidity reading. The absorbance indicated the amount of plaque mass produced. Analysis was performed comparative to sucrose as control.

    RESULTS: Higher rate of bacterial adherence was determined during the early compared to established phases of formation. Comparative to the sweeteners, sucrose showed a 40% increase in bacterial adherence and produced 70% more plaque-mass. Bacterial counts and SEM micrographs exhibited absence of matrix in all the sweetener-treated biofilms at the early phase of formation. At the established phase, presence of matrix was detected but at significantly lower degree compared to sucrose (p<0.05).

    CONCLUSION: Alternatives sweeteners promoted the formation of oral biofilm with lighter mass and lower bacterial adherence. Hence, suggesting alternative sweeteners as potential antiplaque agents.

    Matched MeSH terms: Streptococcus mitis
  7. Shafiei Z, Shuhairi NN, Md Fazly Shah Yap N, Harry Sibungkil CA, Latip J
    PMID: 23049613 DOI: 10.1155/2012/825362
    Myristica fragrans Houtt is mostly cultivated for spices in Penang Island, Malaysia. The ethyl acetate and ethanol extracts of flesh, mace and seed of Myristica fragrans was evaluated the bactericidal potential against three Gram-positive cariogenic bacteria (Streptococcus mutans ATCC 25175, Streptococcus mitis ATCC 6249, and Streptococcus salivarius ATCC 13419) and three Gram-negative periodontopathic bacteria (Aggregatibacter actinomycetemcomitans ATCC 29522, Porphyromonas gingivalis ATCC 33277, and Fusobacterium nucleatum ATCC 25586). Antibacterial activities of the extracts was determined by twofold serial microdilution, with minimum inhibitory concentrations (MIC) ranging from 1.25 to 640 mg/mL and 0.075 to 40 mg/mL. The minimum bactericidal concentration (MBC) was obtained by subculturing method. Among all extracts tested, ethyl acetate extract of flesh has the highest significant inhibitory effects against Gram-positive and Gram-negative bacteria with mean MIC value ranging from 0.625 to 1.25 ± 0.00 (SD) mg/mL; P = 0.017) and highest bactericidal effects at mean MBC value ranging from 0.625 mg/mL to 20 ± 0.00 (SD) mg/mL. While for seed and mace of Myristica fragrans, their ethanol extracts exhibited good antibacterial activity against both groups of test pathogens compared to its ethyl acetate extracts. All of the extracts of Myristica fragrans did not show any antibacterial activities against Fusobacterium nucleatum ATCC 25586. Thus, our study showed the potential effect of ethyl acetate and ethanol extracts from flesh, seed and mace of Myristica fragrans to be new natural agent that can be incorporated in oral care products.
    Matched MeSH terms: Streptococcus mitis
  8. Razak FA, Rahim ZH
    J Oral Sci, 2003 Dec;45(4):201-6.
    PMID: 14763515
    The aqueous extracts of Piper betle and Psidium guajava were prepared and tested for their anti-adherence effect on the adhesion of early plaque settlers (Strep. mitis, Strep. sanguinis and Actinomyces sp.). The saliva-coated glass surfaces were used to simulate the pellicle-coated enamel surface in the oral cavity. Our results showed that the anti-adherence activities of Piper betle and Psidium guajava extracts towards the bacteria were different between the bacterial species. Psidium guajava was shown to have a slightly greater anti-adherence effect on Strep. sanguinis by 5.5% and Actinomyces sp. by 10% and a significantly higher effect on Strep. mitis (70%) compared to Piper betle. The three bacterial species are known to be highly hydrophobic, and that hydrophobic bonding seemed to be an important factor in their adherence activities. It is therefore suggested that the plant extracts, in expressing their anti-adherence activities, could have altered the hydrophobic nature of the bonding between the bacteria and the saliva-coated glass surfaces.
    Matched MeSH terms: Streptococcus mitis/drug effects
  9. Wang Y, Chung FF, Lee SM, Dykes GA
    BMC Res Notes, 2013;6:143.
    PMID: 23578062 DOI: 10.1186/1756-0500-6-143
    Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel.
    Matched MeSH terms: Streptococcus mitis/drug effects
  10. Azizan N, Mohd Said S, Zainal Abidin Z, Jantan I
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206142 DOI: 10.3390/molecules22122135
    In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis, Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea. The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains pathogenic oral bacteria and may have caused disturbances of membrane structure or cell wall of the bacteria.
    Matched MeSH terms: Streptococcus mitis/drug effects; Streptococcus mitis/growth & development; Streptococcus mitis/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links