Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Boonhok R, Sangkanu S, Phumjan S, Jongboonjua R, Sangnopparat N, Kwankaew P, et al.
    PeerJ, 2022;10:e13657.
    PMID: 35811814 DOI: 10.7717/peerj.13657
    BACKGROUND: Curcumin is an active compound derived from turmeric, Curcuma longa, and is known for its benefits to human health. The amoebicidal activity of curcumin against Acanthamoeba triangularis was recently discovered. However, a physiological change of intracellular pathways related to A. triangularis encystation mechanism, including autophagy in the surviving amoeba after curcumin treatment, has never been reported. This study aims to investigate the effect of curcumin on the survival of A. triangularis under nutrient starvation and nutrient-rich condition, as well as to evaluate the A. triangularis encystation and a physiological change of Acanthamoeba autophagy at the mRNA level.

    METHODS: In this study, A. triangularis amoebas were treated with a sublethal dose of curcumin under nutrient starvation and nutrient-rich condition and the surviving amoebas was investigated. Cysts formation and vacuolization were examined by microscopy and transcriptional expression of autophagy-related genes and other encystation-related genes were evaluated by real-time PCR.

    RESULTS: A. triangularis cysts were formed under nutrient starvation. However, in the presence of the autophagy inhibitor, 3-methyladenine (3-MA), the percentage of cysts was significantly reduced. Interestingly, in the presence of curcumin, most of the parasites remained in the trophozoite stage in both the starvation and nutrient-rich condition. In vacuolization analysis, the percentage of amoebas with enlarged vacuole was increased upon starvation. However, the percentage was significantly declined in the presence of curcumin and 3-MA. Molecular analysis of A. triangularis autophagy-related (ATG) genes showed that the mRNA expression of the ATG genes, ATG3, ATG8b, ATG12, ATG16, under the starvation with curcumin was at a basal level along the treatment. The results were similar to those of the curcumin-treated amoebas under a nutrient-rich condition, except AcATG16 which increased later. On the other hand, mRNA expression of encystation-related genes, cellulose synthase and serine proteinase, remained unchanged during the first 18 h, but significantly increased at 24 h post treatment.

    CONCLUSION: Curcumin inhibits cyst formation in surviving trophozoites, which may result from its effect on mRNA expression of key Acanthamoeba ATG-related genes. However, further investigation into the mechanism of curcumin in A. triangularis trophozoites arrest and its association with autophagy or other encystation-related pathways is needed to support the future use of curcumin.

    Matched MeSH terms: Trophozoites/physiology
  2. Anwar A, Khan NA, Siddiqui R
    PLoS Negl Trop Dis, 2019 07;13(7):e0007385.
    PMID: 31348789 DOI: 10.1371/journal.pntd.0007385
    Matched MeSH terms: Trophozoites/drug effects*
  3. Azmi NF, Ghaffar MA, Daud HHM, Cob ZC
    J Invertebr Pathol, 2018 02;152:17-24.
    PMID: 29360442 DOI: 10.1016/j.jip.2018.01.005
    The tropical conch, Laevistrombus canarium (Linnaeus, 1758) and Canarium urceus (Linneaus, 1758) are ecologically and economically important shellfish species in Malaysia and neighboring region. Their populations, however are currently declining and this histopathological study investigates the aspect of parasitism and diseases that may affect their well-being. Conch samples were randomly collected from their natural habitat and histological sections (4-5 µm) of various organs and tissues were examined under light microscope. This was followed by ultrastructure analysis on infected tissues using transmission electron microscope (TEM). Based on the histological analysis, large numbers of gamonts, sporocysts and trophozoites of Apicomplexa-like parasites were observed in the vacuolated cells and pyramidal crypt cells of the digestive tubules, and in the digestive ducts. Furthermore, coccidian and oocysts-like Pseudoklossia sp. stages were also observed in the cells of the kidney. Apart from that, spores with cyst-like structure were observed in the digestive gland and kidney. Although the parasites were present in most of the organs analyzed, there was no obvious symptom, inflammatory response or mortality incurred on both species, which implies the possibility of a non-virulent relationship like commensalisms or mutualism. However, more investigations, including molecular studies, are needed to confirm the parasite identification and dynamics, and to further evaluate the nature of relationship between Apicomplexa parasites and their host.
    Matched MeSH terms: Trophozoites/ultrastructure*
  4. Haldar T, Sardar SK, Ghosal A, Das K, Saito-Nakano Y, Dutta S, et al.
    Trop Biomed, 2024 Sep 01;41(3):319-327.
    PMID: 39548787 DOI: 10.47665/tb.41.3.013
    Giardiasis, caused by the parasite Giardia lamblia, is a prevalent and serious public health concern, particularly affecting children worldwide. The primary mode of transmission for the parasite is through contaminated food and water sources and often leads to the onset of diarrhoea in infected individuals. However, the present medications for Giardiasis treatment often come with numerous side effects, while the growing problem of drug resistance adds a significant complication. Therefore, there is an urgent need for alternative treatments. In this study, we explored the in-vitro potential of Andrographis paniculata leaf extract as a possible alternative treatment for Giardiasis. Our investigation involved assessing the impact of the ethanolic extract on Giardia trophozoites through the analysis of parameters such as cell death, morphological alterations, adherence, ROS generation, and cell cycle dynamics. A. paniculata leaf extracts demonstrated significant inhibitory activity against the growth of Giardia trophozoites. After being incubated for 24 hours, the test results revealed an IC50 value of 51.26µg/ml (95% CI 37.17- 65.35) for inducing cell death in Giardia trophozoites. We observed a substantial degradation of DNA, alteration in morphology, inhibition in adherence, ROS generation and inhibition of the cell cycle in Giardia trophozoites. The findings indicate that A. paniculata extract has the potential to be used as a therapeutic treatment for giardiasis. This approach aims to offer a natural therapeutic solution for giardiasis, minimizing side effects and reducing the risk of drug resistance.
    Matched MeSH terms: Trophozoites/drug effects
  5. Wong WK, Tan ZN, Lim BH, Mohamed Z, Olivos-Garcia A, Noordin R
    Parasitol Res, 2011 Feb;108(2):425-30.
    PMID: 20922423 DOI: 10.1007/s00436-010-2083-8
    Entamoeba histolytica is the etiologic agent for amoebiasis. The excretory-secretory (ES) products of the trophozoites contain virulence factors and antigens useful for diagnostic applications. Contaminants from serum supplements and dead trophozoites impede analysis of ES. Therefore, a protein-free medium that can sustain maximum viability of E. histolytica trophozoites for the longest time duration will enable collection of contaminant-free and higher yield of ES products. In the present study, we compared the efficacy of four types of media in maintaining ≥ 95% trophozoite viability namely Roswell Memorial Park Institute (RPMI-1640), Dulbecco's Modified Eagle Medium (DMEM), phosphate-buffered saline for amoeba (PBS-A), and Hank's balanced salt solution (HBSS). Concurrently, the effect of adding L: -cysteine and ascorbic acid (C&A) to each medium on the parasite viability was also compared. DMEM and RPMI 1640 showed higher viabilities as compared to PBS-A and HBSS. Only RPMI 1640 showed no statistical difference with the control medium for the first 4 h, however the ≥ 95% viability was only maintained for the first 2 h. The other protein-free media showed differences from the serum- and vitamin-free TYI-S-33 control media even after 1 h of incubation. When supplemented with C&A, all media were found to sustain higher trophozoite viabilities than those without the supplements. HBSS-C&A, DMEM-C&A, and RPMI 1640-C&A demonstrated no difference (P>0.05) in parasite viabilities when compared with the control medium throughout the 8-h incubation period. DMEM-C&A showed an eightfold increment in time duration of sustaining ≥ 95% parasite viability, i.e. 8 h, as compared to DMEM alone. Both RPMI 1640-C&A and HBSS-C&A revealed fourfold and threefold increments (i.e., 8 and 6 h, respectively), whereas PBS-A-C&A showed only one fold improvement (i.e., 2 h) as compared to the respective media without C&A. Thus, C&A-supplemented DMEM or RPMI are recommended for collection of ES products.
    Matched MeSH terms: Trophozoites/drug effects; Trophozoites/growth & development
  6. Sholikhah EN, Wijayanti MA, Nurani LH, Mustofa
    Med J Malaysia, 2008 Jul;63 Suppl A:98-9.
    PMID: 19025003
    In previous study, in vitro antiplasmodial activity fractions isolated from methanol extract of E. longifolia, Jack. have been evaluated. Among 5 isolates evaluated from the study, isolate 4 showed high in vitro antiplasmodial activity. However, which stage specificity of the isolates on P. falciparum cycles has not been evaluated. This study was intended to evaluate the stage specificity of the isolate on P. falciparum cycles. The study was conducted by observing the percentage of each stages of P. falciparum microscopically after 8, 16, 24, 32, 40, 48, 56, 64, and 72 hours incubation periods with 3 various concentration of isolate 4 compared with control. The result showed that isolate 4 of E. longifolia root methanol soluble fractions most potent at trophozoites stages of P. falciparum.
    Matched MeSH terms: Trophozoites/physiology; Trophozoites/chemistry*
  7. Tan ZN, Wong WK, Nik Zairi Z, Abdullah B, Rahmah N, Zeehaida M, et al.
    Trop Biomed, 2010 Apr;27(1):79-88.
    PMID: 20562817 MyJurnal
    Entamoeba histolytica causes about 50 million infections worldwide with a death rate of over 100,000 annually. In endemic developing countries where resources are limited, microscopic examinations based on Wheatley trichrome staining is commonly used for diagnosis of intestinal amoebiasis. Other than being a time-consuming method, it must be performed promptly after stool collection as trophozoites disintegrate rapidly in faeces. The aim of this study was to compare the efficacies of Eosin-Y, Wheatley trichrome and Iodine stains in delineating the diagnostic features of the parasite, and subsequently to determine the suitable microscopy observation period for detection of erythrophagocytic and non-erythrophagocytic trophozoites spiked in semi-solid stool sample. Wheatley trichrome staining technique was performed using the standard method while the other two techniques were performed on the slides by mixing the respective staining solution with the spiked stool sample. One million of axenically cultured non-erythrophagocytic E. histolytica and erythrophagocytic E. histolytica were separately spiked into 2 g of fresh semisolid faeces. Percentage viability of the trophozoites in the spiked stool sample was determined at 30 minute intervals for eight hours using the 0.4% Trypan blue exclusion method. The results showed that Eosin-Y and Wheatley trichrome stained the karyosome and chromatin granules better as compared to Iodine stain. The percentage viability of non-erythrophagocytic trophozoites decreased faster than the erythrophagocytic form in the first 5 hours and both dropped to ~10% in the 6th hour spiked sample. In conclusion, Eosin-Y staining technique was found to be the easiest to perform, most rapid and as accurate as the commonly used Wheatley trichrome technique; Eosin-Y stained slide sealed with DPX could also be kept as a permanent record. A period not exceeding 6 hours after stool collection was found to be the most suitable in order to obtain good microscopy results of viable trophozoites.
    Matched MeSH terms: Trophozoites/classification*; Trophozoites/cytology*
  8. Mitsuwan W, Sangkanu S, Romyasamit C, Kaewjai C, Jimoh TO, de Lourdes Pereira M, et al.
    PMID: 33238231 DOI: 10.1016/j.ijpddr.2020.11.001
    Curcuma longa and Curcumin have been documented to have a wide spectrum of pharmacological effects, including anti-Acanthamoeba activity. Hence, this study sought to explore the anti-adhesion activity of C. longa extract and Curcumin against Acanthamoeba triangularis trophozoites and cysts in plastic and contact lenses. Our results showed that C. longa extract and Curcumin significantly inhibited the adhesion of A. triangularis trophozoites and cysts to the plastic surface, as investigated by the crystal violet assay (P 
    Matched MeSH terms: Trophozoites
  9. Tan LP, Megat Abd Rani PA, Sharma RSK, Syed Hussain SS, Watanabe M
    Trop Biomed, 2020 Sep 01;37(3):756-762.
    PMID: 33612788 DOI: 10.47665/tb.37.3.756
    Tritrichomonas foetus is known to cause chronic diarrhea in the feline species in many different regions of the world. However, there is a paucity of information on T. foetus among cats in Malaysia. This study was conducted to determine the prevalence of Tritrichomonas foetus in the pet and stray cat population in Klang Valley, Malaysia. A total of 201 pet and stray cats' fecal samples were collected in Klang Valley. 24 samples were cultured in the InPouch® TF Feline to observe for motile trophozoites. A nested PCR protocol was used to screen for T. foetus in the collected samples. The prevalence of T. foetus in the cat population in Klang Valley was 33%. There was no association between Tritrichomonas infection and age, sex, breed or management of the cats. However, statistical analysis revealed that stray cats were more likely to be infected with T. foetus compared to pet cats. This study confirmed for the first time the presence of T. foetus among the cat population in Klang Valley, Malaysia.
    Matched MeSH terms: Trophozoites
  10. Fakae LB, Harun MSR, Ting DSJ, Dua HS, Cave GWV, Zhu XQ, et al.
    Acta Trop, 2023 Jan;237:106729.
    PMID: 36280206 DOI: 10.1016/j.actatropica.2022.106729
    We examined the anti-acanthamoebic efficacy of green tea Camellia sinensis solvent extract (SE) or its chemical constituents against Acanthamoeba castellanii by using anti-trophozoite, anti-encystation, and anti-excystation assays. C. sinensis SE (625-5000 µg/mL) inhibited trophozoite replication within 24-72 h. C. sinensis SE exhibited a dose-dependent inhibition of encystation, with a marked cysticidal activity at 2500-5000 µg/mL. Two constituents of C. sinensis, namely epigallocatechin-3-gallate and caffeine, at 100 μM and 200 μM respectively, significantly inhibited both trophozoite replication and encystation. Cytotoxicity analysis showed that 156.25-2500 µg/mL of SE was not toxic to human corneal epithelial cells, while up to 625 µg/mL was not toxic to Madin-Darby canine kidney cells. This study shows the anti-acanthamoebic potential of C. sinensis SE against A. castellanii trophozoites and cysts. Pre-clinical studies are required to elucidate the in vivo efficacy and safety of C. sinensis SE.
    Matched MeSH terms: Trophozoites
  11. Chuprom J, Sangkanu S, Mitsuwan W, Boonhok R, Mahabusarakam W, Singh LR, et al.
    PeerJ, 2022;10:e14468.
    PMID: 36523474 DOI: 10.7717/peerj.14468
    Garcinia mangostana L., also known as the mangosteen tree, is a native medicinal plant in Southeast Asia having a wide variety of pharmacologically active compounds, including xanthonoid mangostin. In this study, we examined the pharmacological activities of the selected semi-synthetic mangostin derivative, namely, amoebicidal activity, encystation inhibition, excystation activity, and removal capacity of adhesive Acanthamoeba from the surface of contact lens (CL). Among the three derivatives, C1 exhibited promising anti-Acanthamoeba activity against Acanthamoeba triangularis WU19001 trophozoites and cysts. SEM images displayed morphological changes in Acanthamoeba trophozoites, including the loss of acanthopodia, pore formation in the cell membrane, and membrane damage. In addition, the treated cyst was shrunken and adopted an irregular flat cyst shape. Under a fluorescence microscope, acridine orange and propidium iodide (AO/PI) staining revealed C1 induced condensation of cytoplasm and chromatin with the loss of cell volume in the treated trophozoites, while calcofluor white staining demonstrated the leakage of cell wall in treated cysts, leading to cell death. Interestingly, at the concentration ranges in which C1 showed the anti-Acanthamoeba effects (IC50 values ranging from 0.035-0.056 mg/mL), they were not toxic to Vero cells. C1 displayed the highest inhibitory effect on A. triangularis encystation at 1/16×MIC value (0.004 mg/mL). While C1 demonstrated the excystation activity at 1/128×MIC value with a high rate of 89.47%. Furthermore, C1 exhibited the removal capacity of adhesive Acanthamoeba from the surface of CL comparable with commercial multipurpose solutions (MPSs). Based on the results obtained, C1 may be a promising lead agent to develop a therapeutic for the treatment of Acanthamoeba infections and disinfectant solutions for CL.
    Matched MeSH terms: Trophozoites
  12. Sama-Ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, et al.
    F1000Res, 2022;11:1274.
    PMID: 36936052 DOI: 10.12688/f1000research.126227.1
    Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of the agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results obtained provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
    Matched MeSH terms: Trophozoites
  13. Ahmed U, Sivasothy Y, Khan KM, Khan NA, Wahab SMA, Awang K, et al.
    Acta Trop, 2023 Dec;248:107033.
    PMID: 37783284 DOI: 10.1016/j.actatropica.2023.107033
    Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.
    Matched MeSH terms: Trophozoites
  14. Abdul-Nasir AS, Mashor MY, Mohamed Z
    Comput Math Methods Med, 2012;2012:637360.
    PMID: 23082089 DOI: 10.1155/2012/637360
    Malaria is one of the serious global health problem, causing widespread sufferings and deaths in various parts of the world. With the large number of cases diagnosed over the year, early detection and accurate diagnosis which facilitates prompt treatment is an essential requirement to control malaria. For centuries now, manual microscopic examination of blood slide remains the gold standard for malaria diagnosis. However, low contrast of the malaria and variable smears quality are some factors that may influence the accuracy of interpretation by microbiologists. In order to reduce this problem, this paper aims to investigate the performance of the proposed contrast enhancement techniques namely, modified global and modified linear contrast stretching as well as the conventional global and linear contrast stretching that have been applied on malaria images of P. vivax species. The results show that the proposed modified global and modified linear contrast stretching techniques have successfully increased the contrast of the parasites and the infected red blood cells compared to the conventional global and linear contrast stretching. Hence, the resultant images would become useful to microbiologists for identification of various stages and species of malaria.
    Matched MeSH terms: Trophozoites/metabolism
  15. Anwar A, Numan A, Siddiqui R, Khalid M, Khan NA
    Parasit Vectors, 2019 Jun 03;12(1):280.
    PMID: 31159839 DOI: 10.1186/s13071-019-3528-2
    BACKGROUND: Species of Acanthamoeba are facultative pathogens which can cause sight threatening Acanthamoeba keratitis and a rare but deadly brain infection, granulomatous amoebic encephalitis. Due to conversion of Acanthamoeba trophozoites to resistant cyst stage, most drugs are found to be ineffective at preventing recurrence of infection. This study was designed to test the antiacanthamoebic effects of different cobalt nanoparticles (CoNPs) against trophozoites and cysts, as well as parasite-mediated host cell cytotoxicity.

    METHODS: Three different varieties of CoNPs were synthesized by utilizing hydrothermal and ultrasonication methods and were thoroughly characterized by X-ray diffraction and field emission scanning electron microscopy. Amoebicidal, encystation, excystation, and host cell cytopathogenicity assays were conducted to study the antiacanthamoebic effects of CoNPs.

    RESULTS: The results of the antimicrobial evaluation revealed that cobalt phosphate Co3(PO4)2 hexagonal microflakes, and 100 nm large cobalt hydroxide (Co(OH)2) nanoflakes showed potent amoebicidal activity at 100 and 10 µg/ml against Acanthamoeba castellanii as compared to granular cobalt oxide (Co3O4) of size 35-40 nm. Furthermore, encystation and excystation assays also showed consistent inhibition at 100 µg/ml. CoNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release without causing significant damage to human cells when treated alone.

    CONCLUSIONS: To our knowledge, these findings determined, for the first time, the effects of composition, size and morphology of CoNPs against A. castellanii. Co3(PO4)2 hexagonal microflakes showed the most promising antiamoebic effects as compared to Co(OH)2 nanoflakes and granular Co3O4. The results reported in the present study hold potential for the development of antiamoebic nanomedicine.

    Matched MeSH terms: Trophozoites/drug effects
  16. Baig AM, Lalani S, Khan NA
    J Basic Microbiol, 2017 Jul;57(7):574-579.
    PMID: 28466971 DOI: 10.1002/jobm.201700025
    Here we describe features of apoptosis in unicellular Acanthamoeba castellanii belonging to the T4 genotype. When exposed to apoptosis-inducing compounds such as doxorubicin, A. castellanii trophozoites exhibited cell shrinkage and membrane blebbing as observed microscopically, DNA fragmentation using agarose gel electrophoresis, and phosphatidylserine (PS) externalization using annexin V immunostaining. Overall, these findings suggest the existence of apoptosis in A. castellanii possibly mediated by intrinsic apoptotic cascade. Further research in this field could provide avenues to selectively induce apoptosis in A. castellanii by triggering intrinsic apoptotic cascade.
    Matched MeSH terms: Trophozoites/drug effects
  17. Mitsuwan W, Bunsuwansakul C, Leonard TE, Laohaprapanon S, Hounkong K, Bunluepuech K, et al.
    Pathog Glob Health, 2020 05 18;114(4):194-204.
    PMID: 32315247 DOI: 10.1080/20477724.2020.1755551
    CURCUMA LONGA: (C. longa) rhizome extract has been traditionally used to treat many infections. Curcumin, a pure compound isolated from the plant, has been documented to possess a wide spectrum of pharmacological effects. The present study aimed to investigate the effects of Thai medicinal plant extracts including C. longa extract and Curcumin on Acanthamoeba triangularis, a causative agent of human Acanthamoeba keratitis. The parasite was isolated from the recreational reservoir at Walailak University, Thailand. The organism was identified as A. triangularis using morphology and 18S rDNA nucleotide sequences. The pathogen was tested for their susceptibility to ethanol extracts of Thai medicinal plants based on eye infection treatment. The ethanol C. longa extract showed the strongest anti-Acanthamoeba activity against both the trophozoites and cysts, followed by Coscinium fenestratum, Coccinia grandis, and Acmella oleracea extracts, respectively. After 24 h, 95% reduction of trophozoite viability was significantly decreased following the treatment with C. longa extract at 125 µg/mL, compared with the control (P 
    Matched MeSH terms: Trophozoites/drug effects
  18. Abjani F, Khan NA, Yousuf FA, Siddiqui R
    Cont Lens Anterior Eye, 2016 Jun;39(3):239-43.
    PMID: 26675112 DOI: 10.1016/j.clae.2015.11.004
    Acanthamoeba cysts are highly resistant to contact lens disinfecting solutions. Acanthamoeba cyst wall is partially made of 1,4 β-glucan (i.e., cellulose) and other complex polysaccharides making it a hardy shell that protects the resident amoeba. Here, we hypothesize that targeting the cyst wall structure in addition to antiamoebic compound would improve the efficacy of marketed contact lens disinfecting solutions. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents abolished viability of Acanthamoeba castellanii cysts and trophozoites. When tested alone, none of the agents nor contact lens disinfecting solutions completely destroyed A. castellanii cysts and trophozoites. The absence of cyst wall-degrading enzymes in marketed contact lens disinfecting solutions render them ineffective against Acanthamoeba cysts. It is concluded that the addition of cyst wall degrading molecules in contact lens disinfecting solutions will enhance their efficacy in decreasing the incidence of Acanthamoeba effectively.
    Matched MeSH terms: Trophozoites/cytology; Trophozoites/drug effects
  19. Baig AM, Khan NA, Katyara P, Lalani S, Baig R, Nadeem M, et al.
    Chem Biol Drug Des, 2021 01;97(1):18-27.
    PMID: 32602961 DOI: 10.1111/cbdd.13755
    Acanthamoeba spp. cause a corneal infection, Acanthamoeba keratitis (AK), and a cerebral infection, granulomatous amoebic encephalitis (GAE). Though aggressive chemotherapy has been able to kill the active trophozoite form of Acanthamoeba, the encysted form of this parasite has remained problematic to resist physiological concentrations of drugs. The emergence of encysted amoeba into active trophozoite form poses a challenge to eradicate this parasite. Acanthamoeba trophozoites have active metabolic machinery that furnishes energy in the form of ATPs by subjecting carbohydrates and lipids to undergo pathways including glycolysis and beta-oxidation of free fatty acids, respectively. However, very little is known about the metabolic preferences and dependencies of an encysted trophozoite on minerals or potential nutrients that it consumes to live in an encysted state. Here, we investigate the metabolic and nutrient preferences of the encysted trophozoite of Acanthamoeba castellanii and the possibility to target them by drugs that act on calcium ion dependencies of the encysted amoeba. The experimental assays, immunostaining coupled with bioinformatics tools show that the encysted Acanthamoeba uses diverse nutrient pathways to obtain energy in the quiescent encysted state. These findings highlight potential pathways that can be targeted in eradicating amoebae cysts successfully.
    Matched MeSH terms: Trophozoites/drug effects; Trophozoites/metabolism
  20. Siddiqui R, Saleem S, Khan NA
    Exp Parasitol, 2016 Jun 18;168:16-24.
    PMID: 27327524 DOI: 10.1016/j.exppara.2016.06.006
    The treatment of Acanthamoeba infections remains problematic, suggesting that new targets and/or chemotherapeutic agents are needed. Bioassay-guided screening of drugs that are clinically-approved for non-communicable diseases against opportunistic eukaryotic pathogens is a viable strategy. With known targets and mode of action, such drugs can advance to clinical trials at a faster pace. Recently Bortezomib (proteasome inhibitor) has been approved by FDA in the treatment of multiple myeloma. As proteasomal pathways are well known regulators of a variety of eukaryotic cellular functions, the overall aim of the present study was to study the effects of peptidic and non-peptidic proteasome inhibitors on the biology and pathogenesis of Acanthamoeba castellanii of the T4 genotype, in vitro. Zymographic assays revealed that inhibition of proteasome had detrimental effects on the extracellular proteolytic activities of A. castellanii. Proteasome inhibition affected A. castellanii growth (using amoebistatic assays), but not viability of A. castellanii. Importantly, proteasome inhibitors affected encystation as determined by trophozoite transformation into the cyst form, as well as excystation, as determined by cyst transformation into the trophozoite form. The ability of proteasome inhibitor to block Acanthamoeba differentiation is significant, as it presents a major challenge in the successful treatment of Acanthamoeba infection. As these drugs are used clinically against non-communicable diseases, the findings reported here have the potential to be tested in a clinical setting against amoebic infections.
    Matched MeSH terms: Trophozoites
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links