Complete genomes of xenobiotic-degrading microorganisms provide valuable resources for researchers to understand molecular mechanisms involved in bioremediation. Despite the well-known ability of Sphingomonas paucimobilis to degrade persistent xenobiotic compounds, a complete genome sequencing is lacking for this organism. In line with this, we report the first complete genome sequence of Sphingomonas paucimobilis (strain AIMST S2), an organophosphate and hydrocarbon-degrading bacterium isolated from oil-polluted soil at Kedah, Malaysia. The genome was derived from a hybrid assembly of short and long reads generated by Illumina HiSeq and MinION, respectively. The assembly resulted in a single contig of 4,005,505 bases which consisted of 3,612 CDS and 56 tRNAs. An array of genes involved in xenobiotic degradation and plant-growth promoters were identified, suggesting its' potential role as an effective microorganism in bioremediation and agriculture. Having reported the first complete genome of the species, this study will serve as a stepping stone for comparative genome analysis of Sphingomonas strains and other xenobiotic-degrading microorganisms as well as gene expression studies in organophosphate biodegradation.
The potential of isothiocyanates to antagonize the carcinogenicity of structurally diverse chemicals has been established in animals. A feasible mechanism of action involves protecting DNA by reducing the availability of the genotoxic metabolites of chemical carcinogens by either inhibiting their generation and/or stimulating their detoxification. In vivo as well as in vitro studies conducted in rat/human primary hepatocytes and precision-cut tissue slices have revealed that isothiocyanates can impair cytochrome P450 activity, including the CYP1 family which is the most active in the bioactivation of carcinogens, by virtue of being mechanism-based inactivators. The aromatic phenethyl isothiocyanate is the most effective of those studied, whereas aliphatic isothiocyanates such as sulforaphane and erucin necessitate high doses in order to manifest such effects that may not always be achievable through the diet. In all systems studied, isothiocyanates are strong inducers of detoxification enzyme systems including quinone reductase, glutathione S-transferase, epoxide hydrolase, and UDP-glucuronosyl transferase. Indeed, in smokers phenethyl isothiocyanate intake increases the urinary excretion of inactive mercapturate metabolites of toxic chemicals present in tobacco. Glucosinolates, the precursors of isothiocyanates, have also the potential to upregulate detoxification enzyme systems, but their contribution to the cancer chemoprevention linked to cruciferous vegetable consumption remains to be evaluated.
Xenobiotic Organic Compounds (XOCs) have been widely considered to be pollutant compounds due to their harmful impacts on aquatic life. However, there have been few rigorous studies of cutting-edge technology used to eradicate XOCs and their presence in bathroom greywater. The present review provides a comprehensive examination of current methodologies used for removing XOCs by photocatalysis of green nanoparticles. It was appeared that zinc oxide nanoparticles (ZnO NPs) have high efficiency (99%) in photocatalysis process. Green synthesis provides proven processes that do not require dangerous chemicals or expensive equipment, making photocatalysis a potential solution for the status quo. XOCs residue was decomposed, and pollutants were eliminated with varied degrees of efficiency using green synthesis ZnO nanoparticles. It is hypothesized that the utilization of photocatalysis can create a greywater treatment system capable of degrading the toxic XOCs in greywater while increasing the pace of production. Hence, this review will be beneficial in improving greywater quality and photocatalysis using green nanoparticles can be an immediate platform in solving the issue regarding the existence of XOCs in greywater in Malaysia. Researchers in the future may benefit from focusing on optimizing photocatalytic degradation using green-synthesis ZnO. It might also help with the creativity and productivity of the next generation of authoritative concerns, notably water conservation.
Nanoparticles (NPs) have wide spectrum applications in the areas of industry and biomedicine. However, concerns about their toxic and negative impacts on the environments as well as human health have been raised. Cytochrome P450s (CYPs) are involved in endogenous and exogenous metabolism. Modulations of CYP can adversely damage drug metabolism, detoxification of xenobiotics and animal physiology functions. This article focused on NPs-CYP interactions for humans and animals available in the literature. It was found that different NPs process specific inhibitory potencies against CYPs involved in drug metabolism. Moreover, NPs were able to modify the expression of CYPs genes or protein in humans and other animals, which highlighted their detoxification functions. Nonetheless, changes of CYPs responsible for hormone synthesis and metabolism resulted in endocrine disturbances. Hence, there is a need to screen newly developed NPs to evaluate their interactions with CYPs. The future studies should further strategize the in vitro approaches to reveal the molecular mechanisms behind interactions by taking full considerations of the interference of co-factors, buffers, substrates and metabolites with NPs. Moreover, in vivo studies should compare the influences of NPs via different administration routes and different duration of treatments to reveal the physiological significance.
Cytochromes P450 (CYPs) play a central role in the Phase I metabolism of drugs and other xenobiotics. It is estimated that CYPs can metabolize up to two-thirds of drugs present in humans. Over the past two decades, there have been numerous advances in in vitro methodologies to characterize drug metabolism and interaction involving CYPs.
A new inhibitive heavy metals determination method using trypsin has been developed. The enzyme was assayed using the casein-Coomassie-dye-binding method. In the absence of inhibitors, casein was hydrolysed to completion and the Coomassie-dye was unable to stain the protein and the solution became brown. In the presence of metals, the hydrolysis of casein was inhibited and the solution remained blue. The bioassay was able to detect zinc and mercury with IC50 (concentration causing 50% inhibition) values of 5.78 and 16.38 mg l(-1) respectively. The limits of detection (LOD), for zinc and mercury were 0.06 mg l(-1) (0.05-0.07, 95% confidence interval) and 1.06 mg l(-1) (1.017-1.102, 95% confidence interval), respectively. The limits of quantitation (LOQ) for zinc and mercury were 0.61 mg l(-1) (0.51-0.74 at a 95% confidence interval) and 1.35 mg l(-1) (1.29-1.40 at a 95% confidence interval), respectively. The IC50 value for zinc was much higher than the IC50 values for papain and Rainbow trout, but was within the range of Daphnia magna and Microtox. The IC50 value for zinc was only lower than those for immobilized urease. Other toxic heavy metals, such as lead, silver arsenic, copper and cadmium, did not inhibit the enzyme at 20 mg l(-1). Using this assay we managed to detect elevated zinc concentrations in several environmental samples. Pesticides, such as carbaryl, flucythrinate, metolachlor glyphosate, diuron, diazinon, endosulfan sulphate, atrazine, coumaphos, imidacloprid, dicamba and paraquat, showed no effect on the activity of trypsin relative to control (One-way ANOVA, F(12,26)= 0.3527, p> 0.05). Of the 17 xenobiotics tested, only (sodium dodecyl sulphate) SDS gave positive interference with 150% activity higher than that of the control at 0.25% (v/v).
Laccases, oxidative copper-enzymes found in fungi and bacteria were used as the basis in the design of nona- and tetrapeptides. Laccases are known to be excellent catalysts for the degradation of phenolic xenobiotic waste. However, since solvent extraction of laccases is environmentally-unfriendly and yields obtained are low, they are less preferred compared to synthetic catalysts. The histidine rich peptides were designed based on the active site of laccase extracted from Trametes versicolor through RCSB Protein Data Bank, LOMETS and PyMol software. The peptides were synthesized using Fmoc-solid phase peptide synthesis (SPPS) with 30-40% yield. These peptides were purified and characterized using LC-MS (purities >75%), FTIR and NMR spectroscopy. Synthesized copper(II)-peptides were crystallized and then analyzed spectroscopically. Their structures were elucidated using 1D and 2D NMR. Standards (o,m,p-cresol, 2,4-dichlorophenol) catalysed using laccase from Trametes versicolor (0.66 U/mg) were screened under different temperatures and stirring rate conditions. After optimizing the degradation of the standards with the best reaction conditions reported herein, medications with phenolic and aromatic structures such as ibuprofen, paracetamol (acetaminophen), salbutamol, erythromycin and insulin were screened using laccase (positive control), apo-peptides and copper-peptides. Their activities evaluated using GC-MS, were compared with those of peptide and copper-peptide catalysts. The tetrapeptide was found to have the higher degradation activity towards salbutamol (96.8%) compared with laccase at 42.8%. Ibuprofen (35.1%), salbutamol (52.9%) and erythromycin (49.7%) were reported to have the highest degradation activities using Cu-tetrapeptide as catalyst when compared with the other medications. Consequently, o-cresol (84%) was oxidized by Tp-Cu while the apo-peptides failed to oxidize the cresols. Copper(II)-peptides were observed to have higher catalytic activity compared to their parent peptides and the enzyme laccase for xenobiotic degradation.
With more than 80 cytochrome P450 (CYP) encoding genes found in the nematode Caenorhabditis elegans (C. elegans), the cyp35 genes are one of the important genes involved in many biological processes such as fatty acid synthesis and storage, xenobiotic stress response, dauer and eggshell formation, and xenobiotic metabolism. The C. elegans CYP35 subfamily consisted of A, B, C, and D, which have the closest homolog to human CYP2 family. C. elegans homologs could answer part of the hunt for human disease genes. This review aims to provide an overview of CYP35 in C. elegans and their human homologs, to explore the roles of CYP35 in various C. elegans biological processes, and how the genes of cyp35 upregulation or downregulation are influenced by biological processes, upon exposure to xenobiotics or changes in diet and environment. The C. elegans CYP35 gene expression could be upregulated by heavy metals, pesticides, anti-parasitic and anti-chemotherapeutic agents, polycyclic aromatic hydrocarbons (PAHs), nanoparticles, drugs, and organic chemical compounds. Among the cyp35 genes, cyp-35A2 is involved in most of the C. elegans biological processes regulation. Further venture of cyp35 genes, the closest homolog of CYP2 which is the largest family of human CYPs, may have the power to locate cyps gene targets, discovery of novel therapeutic strategies, and possibly a successful medical regime to combat obesity, cancers, and cyps gene-related diseases.
A heavy-metal assay has been developed using bromelain, a protease. The enzyme is assayed using casein as a substrate with Coomassie dye to track completion of hydrolysis of casein. In the absence of inhibitors, casein is hydrolysed to completion, and the solution is brown. In the presence of metal ions such as Hg2+ and Cu2+, the hydrolysis of casein is inhibited, and the solution remains blue. Exclusion of sulfhydryl protective agent and ethylenediaminetetraacetic in the original assay improved sensitivity to heavy metals several fold. The assay is sensitive to Hg2+ and Cu2+, exhibiting a dose-response curve with an IC50 of 0.15 mg 1(-1) for Hg2+ and a one-phase binding curve with an IC50 of 0.23 mg 1(-1) for Cu2+. The IC50 value for Hg2+ is found to be lower to several other assays such as immobilized urease and papain assay, whilst the IC50 value for Cu2+ is lower than immobilized urease, 15-min Microtox, and rainbow trout.
All living organisms including human beings in this biosphere are constantly exposed to a variety of xenobiotics. The enormous chemical load in the environment has been primarily through the modernization, industrialization and changes in lifestyle. The changing food habits to suit modern living pose a serious threat to a healthy life. Among others, consumption of soft drinks invariably forms a part of modern life. Mostly children and adolescents are the target groups vulnerable to frequent consumption, compromising the nutritious foods such as fruits, vegetables, milk and milk products. Logically, the quality of the soft drinks is determined by the type and quantity of chemicals present, including those present inherently in the water used for such preparations. The impact of soft drinks on human health has been a subject of in depth research. Consumption of soft drinks plays a major role in a variety of diseases like obesity, diabetes, dental and bone disorders and others, more so among children and adolescents. The toxic effects of soft drinks have gained much attention, due to the frequent scientific reports and media attention. The objective of this review is to provide a comprehensive scrutiny of the impact of soft drinks on health, as well as to suggest alternatives for a healthy life style.
The presence of both heavy metals and organic xenobiotic pollutants in a contaminated site
justifies the application of either a multitude of microbial degraders or microorganisms having
the capacity to detoxify a number of pollutants at the same time. Molybdenum is an essential
heavy metal that is toxic to ruminants at a high level. Ruminants such as cow and goats
experience severe hypocuprosis leading to scouring and death at a concentration as low as
several parts per million. In this study, a molybdenum-reducing bacterium with amide-degrading
capacity has been isolated from contaminated soils. The bacterium, using glucose as the best
electron donor reduces molybdenum in the form of sodium molybdate to molybdenum blue. The
maximal pH reduction occurs between 6.0 and 6.3, and the bacterium showed an excellent
reduction in temperatures between 25 and 40 oC. The reduction was maximal at molybdate
concentrations of between 15 and 25 mM. Molybdenum reduction incidentally was inhibited by
several toxic heavy metals. Other carbon sources including toxic xenobiotics such as amides
were screened for their ability to support molybdate reduction. Of all the amides, only
acrylamide can support molybdenum reduction. The other amides; such as acetamide and
propionamide can support growth. Analysis using phylogenetic analysis resulted in a tentative
identification of the bacterium as Pseudomonas sp. strain 135. This bacterium is essential in
remediating sites contaminated with molybdenum, especially in agricultural soil co-contaminated
with acrylamide, a known soil stabilizer.
The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
Several xenobiotic metabolizing enzymes, including CYP1A1, NAT2 and GSTM1, are subject to genetic polymorphisms. Because these enzymes are important for the detoxification and/or bioactivation of drugs and carcinogens, these polymorphisms have important implications in therapeutics and cancer susceptibility. The distributions of CYP1A1, NAT2 and GSTM1 genotype frequencies in unrelated individuals of the Indian (n = 139) and Malay (n = 146) populations were characterized by the polymerase chain reaction. The respective allelic frequencies of wild-type and mutant alleles of CYP1A1 were 0.82 and 0.18 for the Indians, and 0.69 and 0.31 for the Malays. The frequencies of wild-type, M1, M2 and M3 of NAT2 among Indians were 0.44, 0.20, 0.32 and 0.04 respectively. The corresponding NAT2 allelic frequencies in Malays were 0.41, 0.12, 0.38 and 0.09. The GSTM1*A allele could not be amplified in 33.1% of Indians and 61.6% of Malays. At least one GSTM1*B allele was detected in 7.2% and 7.5% of the respective populations. The allelic frequencies of CYP1A1, NAT2 and GSTM1 among Malays are similar to previously reported frequencies among Chinese in the region. These findings will be of importance in the determination of cancer risks in these populations.
Cytochrome P450 monooxygenase (P450) is a superfamily of enzymes that is important in metabolism of endogenous and exogenous compounds. In insects, these enzymes confer resistance to insecticides through its metabolic activities. Members of P450 from family 6 in insects are known to play a role in such function. In this study, we have isolated seven novel family 6 P450 from Aedes albopictus (Skuse) (Diptera: Culicidae), a vector of dengue and chikungunya fever. Induction profile of these seven genes was studied using several insecticides and xenobiotics. It was found that deltamethrin and permethrin did not induce expression of any genes. Another insecticide, temephos, inhibited expression of CYP6P15 for fivefold and twofold for CYP6N29, CYP6Y7, and CYP6Z18. In addition, copper II sulfate induced expression of CYP6M17 and CYP6N28 for up to sixfold. Benzothiazole (BZT), a tire leachate induced the expression of CYP6M17 by fourfold, CYP6N28 by sevenfold, but inhibited the expression of CYP6P15 for threefold and CYP6Y7 for twofold. Meanwhile, piperonyl butoxide (PBO) induced the expression CYP6N28 (twofold), while it inhibited the expression of CYP6P15 (fivefold) and CYP6Y7 (twofold). Remarkably, all seven genes were induced two- to eightfold by acetone in larval stage, but not adult stage. Expression of CYP6N28 was twofold higher, while expression of CYP6P15 was 15-fold lower in adult than larva. The other five P450s were not differentially expressed between the larvae and adult. This finding showed that acetone can be a good inducer of P450 in Ae. albopictus. On the other hand, temephos can act as good suppressor of P450, which may affect its own bioefficacy because it needs to be bioactivated by P450. To the best of our knowledge, this is the first report on acetone-inducible P450 in insects. Further study is needed to characterize the mechanisms involved in acetone induction in P450.
The indiscriminate released of heavy metals and xenobiotics into soils and aquatic bodies
severely alter soil organisms and the ecosystem. The isolation of xenobiotics degrading
microorganisms is cost-effective and naturally pleasant approach. Lately, the toxicological effect
of molybdenum to the spermatogenesis of several organisms has been record. This present study
is aimed at the isolation and characterization of a bacterium capable of converting molybdenum
to the colloidal molybdenum blue. Bacteria characterization was performed in a microplate
format using resting cells. Thus, the reduction process can be employed as a device for
molybdenum bioremediation. The results of the study revealed an optimum reduction at pH
between 6.0 and 6.3 and temperatures of between 25 and 40 oC. Similarly, it was also observed
that a phosphate concentration not greater than 5.0 mM and a sodium molybdate concentration
at 20 mM was required for reduction. Glucose was observed as the best carbon source to support
reduction. Following the scanning of molybdenum blue, it revealed an absorption spectrum
indicating the characteristics of molybdenum blue as a reduced phosphomolybdate. Molybdenum
reduction is inhibited by heavy metals like silver, lead, arsenic and mercury. Furthermore, the
ability of the bacterium (Pseudomonas sp. strain Dr.Y Kertih) to utilize several organic
xenobiotics such as phenol, acrylamide, nicotinamide, acetamide, iodoacetamide, propionamide,
acetamide, sodium dodecyl sulfate (SDS) and diesel as electron donor sources for aiding
reduction or as carbon sources for growth was also examined. Finding showed that none was
capable of aiding molybdenum reduction, however the bacterium was capable of growing on both
diesel and phenol as carbon sources. GC analysis was used to confirmed diesel degradation.
Gonadotropin-releasing hormone (GnRH) is essential for the initiation and maintenance of reproductive functions in vertebrates. To date, three distinct paralogue lineages, GnRH1, GnRH2, and GnRH3, have been identified with different functions and regulatory mechanisms. Among them, hypothalamic GnRH1 neurons are classically known as the hypophysiotropic form that is regulated by estrogen feedback. However, the mechanism of action underlying the estrogen-dependent regulation of GnRH1 has been debated, mainly due to the coexpression of low levels of estrogen receptor (ER) genes. In addition, the role of sex steroids in the modulation of GnRH2 and GnRH3 neurons has not been fully elucidated. Using single-cell real-time PCR, we revealed the expression of genes for estrogen, androgen, glucocorticoid, thyroid, and xenobiotic receptors in GnRH1, GnRH2, and GnRH3 neurons in the male Nile tilapia Oreochromis niloticus. We further quantified expression levels of estrogen receptor genes (ERα, ERβ, and ERγ) in three GnRH neuron types in male tilapia of two different social statuses (dominant and subordinate) at the single cell level. In dominant males, GnRH1 mRNA levels were positively proportional to ERγ mRNA levels, while in subordinate males, GnRH2 mRNA levels were positively proportional to ERβ mRNA levels. These results indicate that variations in the expression of nuclear receptors (and possibly steroid sensitivities) among individual GnRH cells may facilitate different physiological processes, such as the promotion of reproductive activities through GnRH1 neurons, and the inhibition of feeding and sexual behaviors through GnRH2 neurons.
The pathogenesis of skin inflammatory diseases such as atopic dermatitis, acne, psoriasis, and skin cancers generally involve the generation of oxidative stress and chronic inflammation. Exposure of the skin to external aggressors such as ultraviolet (UV) radiation and xenobiotics induces the generation of reactive oxygen species (ROS) which subsequently activates immune responses and causes immunological aberrations. Hence, antioxidant and anti-inflammatory agents were considered to be potential compounds to treat skin inflammatory diseases. A prime example of such compounds is xanthone (xanthene-9-one), a class of natural compounds that possess a wide range of biological activities including antioxidant, anti-inflammatory, antimicrobial, cytotoxic, and chemotherapeutic effects. Many studies reported various mechanisms of action by xanthones for the treatment of skin inflammatory diseases. These mechanisms of action commonly involve the modulation of various pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNF-α), as well as anti-inflammatory cytokines such as IL-10. Other mechanisms of action include the regulation of NF-κB and MAPK signaling pathways, besides immune cell recruitment via modulation of chemokines, activation, and infiltration. Moreover, disease-specific activity contributed by xanthones, such as antibacterial action against Propionibacterium acnes and Staphylococcus epidermidis for acne treatment, and numerous cytotoxic mechanisms involving pro-apoptotic and anti-metastatic effects for skin cancer treatment have been extensively elucidated. Furthermore, xanthones have been reported to modulate pathways responsible for mediating oxidative stress and inflammation such as PPAR, nuclear factor erythroid 2-related factor and prostaglandin cascades. These pathways were also implicated in skin inflammatory diseases. Xanthones including the prenylated α-mangostin (2) and γ-mangostin (3), glucosylated mangiferin (4) and the caged xanthone gambogic acid (8) are potential lead compounds to be further developed into pharmaceutical agents for the treatment of skin inflammatory diseases. Future studies on the structure-activity relationships, molecular mechanisms, and applications of xanthones for the treatment of skin inflammatory diseases are thus highly recommended.