The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15 mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested.
Shear-free turbulence generated from an oscillating grid in a water tank impinging on an impermeable surface at varying Reynolds number 74 ≤ Re(l) ≤ 570 was studied experimentally, where the Reynolds number is defined based on the root-mean-square (r.m.s) horizontal velocity and the integral length scale. A particular focus was paid to the turbulence characteristics for low Re(l) < 150 to investigate the minimum limit of Re l obeying the profiles of rapid distortion theory. The measurements taken at near base included the r.m.s turbulent velocities, evolution of isotropy, integral length scales, and energy spectra. Statistical analysis of the velocity data showed that the anisotropic turbulence structure follows the theory for flows with Re(l) ≥ 117. At low Re(l) < 117, however, the turbulence profile deviated from the prediction where no amplification of horizontal velocity components was observed and the vertical velocity components were seen to be constant towards the tank base. Both velocity components sharply decreased towards zero at a distance of ≈ 1/3 of the integral length scale above the base due to viscous damping. The lower limit where Re(l) obeys the standard profile was found to be within the range 114 ≤ Re(l) ≤ 116.
Recent observational studies showed that post-operative aspirin use reduces cancer relapse and death in the earliest stages of colorectal cancer. We sought to evaluate the cost-effectiveness of aspirin as an adjuvant therapy in Stage I and II colorectal cancer patients aged 65 years and older.
Stimuli-responsive bacterial cellulose-g-poly(acrylic acid) hydrogels were investigated for their potential use as an oral delivery system for proteins. These hydrogels were synthesized using electron beam irradiation without any cross-linking agents, thereby eliminating any potential toxic effects associated with cross-linkers. Bovine serum albumin (BSA), a model protein drug, was loaded into the hydrogels, and the release profile in simulated gastrointestinal fluids was investigated. Cumulative release of less than 10% in simulated gastric fluid (SGF) demonstrated the potential of these hydrogels to protect BSA from the acidic environment of the stomach. Subsequent conformational stability analyses of released BSA by SDS-PAGE, circular dichroism, and an esterase activity assay indicated that the structural integrity and bioactivity of BSA was maintained and preserved by the hydrogels. Furthermore, an increase in BSA penetration across intestinal mucosa tissue was observed in an ex vivo penetration experiment. Our fabricated hydrogels exhibited excellent cytocompatibility and showed no sign of toxicity, indicating the safety of these hydrogels for in vivo applications.
Polymer-Fish oil bigel (hydrogel/oleogel colloidal mixture) was developed by using fish oil and natural (sodium alginate) and synthetic (hydroxypropyl methylcellulose) polymer for pharmaceutical purposes. The bigels were closely monitored and thermal, rheological and mechanical properties were compared with the conventional hydrogels for their potential use as an effective transdermal drug delivery vehicle. Stability of the fish oil fatty acids (especially eicosapentanoic acid, EPA and docosahexanoic acid, DHA) was determined by gas chromatography and the drug content (imiquimod) was assessed with liquid chromatography. Furthermore, in vitro permeation study was conducted to determine the capability of the fish oil-bigels as transdermal drug delivery vehicle. The bigels showed pseudoplastic rheological features, with excellent mechanical properties (adhesiveness, peak stress and hardness), which indicated their excellent spreadability for application on the skin. Bigels prepared with mixture of sodium alginate and fish oil (SB1 and SB2), and the bigels prepared with the mixture of hydroxypropyl methylcellulose and fish oil (HB1-HB3) showed high cumulative permeation and drug flux compared to hydrogels. Addition of fish oil proved to be beneficial in increasing the drug permeation and the results were statistically significant (p < 0.05, one-way Anova, SPSS 20.0). Thus, it can be concluded that bigel formulations could be used as an effective topical and transdermal drug delivery vehicle for pharmaceutical purposes.
The study was aimed to evaluate the anti-inflammatory activity of ethanolic and aqueous extracts of Polygonum minus (Huds) using in vitro and in vivo approaches.
The present study aims to investigate the analgesic activity of the methanol extract of the galls of Quercus infectoria in rats using hot plate and tail-flick methods. The extract was administered intraperitoneally at a dose of 20 mg/kg while morphine sulfate and sodium salicylate (10 mg/kg) served as standards. The methanol extract exhibited significant analgesic activity in the tail-flick model (P < 0.05) by increasing the reaction time of the rats to 8.0 sec at 30 min after treatment in comparison to control (4.4 sec). Morphine sulfate produced a reaction time of 11.9 sec in the same test. At the peak of activity (30 min), the extract produced maximum possible analgesia (MPA) of 34.2%, whilst morphine sulfate achieved a peak MPA of 70.9%. No analgesic effects have been observed using sodium salicylate in the tail-flick model. In the same model, the extract and sodium salicylate demonstrated comparable reaction times. Tail-flick is a better method to evaluate analgesic activity as no significant results were observed for all treatments using hot plate with the exception of morphine sulfate, which showed significant results only at 45 and 60 min after treatment. In conclusion, the methanol extract of the galls of Quercus infectoria displayed analgesic activity.
Oxidative stress has been suggested to play a role in hypertension and hypertension induced organ damage. This study examined the effect of enalapril, an antihypertensive drug, on oxidative stress markers and antioxidant enzymes in kidney of spontaneously hypertensive rat (SHR) and Nω -nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups (SHR, SHR+enalapril, SHR+L-NAME, and SHR+enalapril+L-NAME). Enalapril (30 mg kg(-1) day(-1)) was administered from week 4 to week 28 and L-NAME (25 mg kg(-1) day(-1)) was administered from week 16 to week 28 in drinking water. Systolic blood pressure (SBP) was measured during the experimental period. At the end of experimental periods, rats were sacrificed; urine, blood, and kidneys were collected for the assessment of creatinine clearance, total protein, total antioxidant status (TAS), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and catalase (CAT), as well as histopathological examination. Enalapril treatment significantly enhanced the renal TAS level (P < 0.001) and SOD activity (P < 0.001), reduced the TBARS levels (P < 0.001), and also prevented the renal dysfunction and histopathological changes. The results indicate that, besides its hypotensive and renoprotective effects, enalapril treatment also diminishes oxidative stress in the kidneys of both the SHR and SHR+L-NAME groups.
The correction of cleft lip nasal deformity is challenging and there have been numerous methods described in the literature with little demonstrated technical superiority of one over another. The common clinical issues associated with cleft lip nasal deformity are its lack of symmetry, alar collapse on the affected side, obtuse nasal labial angle, short nasal length, loss of tip definition, and altered columella show among others. We carried out augmentation of cleft lip rhinoplasties with rib graft in 16 patients over the one-year study period. Each of these patients was reviewed and given questionnaire before and after surgery to evaluate their response on the outcome to the approach. Preoperatively, nasal asymmetry is the main complaint (14/16, 87.5%) among our series of patients. Postoperatively, 12 (75%) patients out of the 16 reported significant improvement in their nasal symmetry with the other four marginal. All patients reported excellent nasal projection postoperatively with good nasal tip definition. Our series of patients reported overall good satisfaction outcome and will recommend this procedure to other patients with cleft lip nasal deformity. In conclusion, augmentation of cleft lip rhinoplasty can be employed to achieve perceivable and satisfactory outcome in patients with cleft lip nasal deformity.
The striatum is considered to be the central processing unit of the basal ganglia in locomotor activity and cognitive function of the brain. IGF-1 could act as a control switch for the long-term proliferation and survival of EGF+bFGF-responsive cultured embryonic striatal stem cell (ESSC), while LIF imposes a negative impact on cell proliferation. The IGF-1-treated ESSCs also showed elevated hTERT expression with demonstration of self-renewal and trilineage commitment (astrocytes, oligodendrocytes, and neurons). In order to decipher the underlying regulatory microRNA (miRNA)s in IGF-1/LIF-treated ESSC-derived neurogenesis, we performed in-depth miRNA profiling at 12 days in vitro and analyzed the candidates using the Partek Genome Suite software. The annotated miRNA fingerprints delineated the differential expressions of miR-143, miR-433, and miR-503 specific to IGF-1 treatment. Similarly, the LIF-treated ESSCs demonstrated specific expression of miR-326, miR-181, and miR-22, as they were nonsignificant in IGF-treated ESSCs. To elucidate the possible downstream pathways, we performed in silico mapping of the said miRNAs into ingenuity pathway analysis. Our findings revealed the important mRNA targets of the miRNAs and suggested specific interactomes. The above studies introduced a new genre of miRNAs for ESSC-based neuroregenerative therapeutic applications.
MicroRNAs (miRNAs) are short noncoding RNA which regulate gene expression by messenger RNA (mRNA) degradation or translation repression. The plethora of published reports in recent years demonstrated that they play fundamental roles in many biological processes, such as carcinogenesis, angiogenesis, programmed cell death, cell proliferation, invasion, migration, and differentiation by acting as tumour suppressor or oncogene, and aberrations in their expressions have been linked to onset and progression of various cancers. Furthermore, each miRNA is capable of regulating the expression of many genes, allowing them to simultaneously regulate multiple cellular signalling pathways. Hence, miRNAs have the potential to be used as biomarkers for cancer diagnosis and prognosis as well as therapeutic targets. Recent studies have shown that natural agents such as curcumin, resveratrol, genistein, epigallocatechin-3-gallate, indole-3-carbinol, and 3,3'-diindolylmethane exert their antiproliferative and/or proapoptotic effects through the regulation of one or more miRNAs. Therefore, this review will look at the regulation of miRNAs by natural agents as a means to potentially enhance the efficacy of conventional chemotherapy through combinatorial therapies. It is hoped that this would provide new strategies in cancer therapies to improve overall response and survival outcome in cancer patients.
Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.
Beta-amyloid precursor protein cleavage enzyme 1 (BACE1) and beta-amyloid precursor protein cleavage enzyme 2 (BACE2), members of aspartyl protease family, are close homologues and have high similarity in their protein crystal structures. However, their enzymatic properties differ leading to disparate clinical consequences. In order to identify the residues that are responsible for such differences, we used evolutionary trace (ET) method to compare the amino acid conservation patterns of BACE1 and BACE2 in several mammalian species. We found that, in BACE1 and BACE2 structures, most of the ligand binding sites are conserved which indicate their enzymatic property of aspartyl protease family members. The other conserved residues are more or less randomly localized in other parts of the structures. Four group-specific residues were identified at the ligand binding site of BACE1 and BACE2. We postulated that these residues would be essential for selectivity of BACE1 and BACE2 biological functions and could be sites of interest for the design of selective inhibitors targeting either BACE1 or BACE2.
This paper addresses the problems and threats associated with verification of integrity, proof of authenticity, tamper detection, and copyright protection for digital-text content. Such issues were largely addressed in the literature for images, audio, and video, with only a few papers addressing the challenge of sensitive plain-text media under known constraints. Specifically, with text as the predominant online communication medium, it becomes crucial that techniques are deployed to protect such information. A number of digital-signature, hashing, and watermarking schemes have been proposed that essentially bind source data or embed invisible data in a cover media to achieve its goal. While many such complex schemes with resource redundancies are sufficient in offline and less-sensitive texts, this paper proposes a hybrid approach based on zero-watermarking and digital-signature-like manipulations for sensitive text documents in order to achieve content originality and integrity verification without physically modifying the cover text in anyway. The proposed algorithm was implemented and shown to be robust against undetected content modifications and is capable of confirming proof of originality whilst detecting and locating deliberate/nondeliberate tampering. Additionally, enhancements in resource utilisation and reduced redundancies were achieved in comparison to traditional encryption-based approaches. Finally, analysis and remarks are made about the current state of the art, and future research issues are discussed under the given constraints.
MeSH terms: Algorithms*; Confidentiality/standards*; Pattern Recognition, Automated; Signal Processing, Computer-Assisted; Reproducibility of Results; Computer Security/standards*; Data Compression/methods*
Nontuberculous Mycobacterium (NTM) middle ear infection is a rare cause of chronic bilateral intermittent otorrhea. We report a rare case of bilateral NTM middle ear infection in which a 55-year-old woman presented with intermittent otorrhea of 40 years' duration. The patient was treated medically with success. We conclude that NTM is a rare but probably under-recognized cause of chronic otitis media. A high index of suspicion is needed for the diagnosis to avoid prolonged morbidity. Treatment includes surgical clearance of infected tissue with appropriate antimycobacterial drugs, which are selected based on culture and sensitivity.
We encountered a patient with a tongue base lymphoma that we initially diagnosed as a lingual tonsil in view of its benign appearance. We established the correct diagnosis of Waldeyer ring lymphoma by histology. This case led us to conduct a study of all cases of Waldeyer ring lymphoma that had been treated at our center during a 10-year period. We retrospectively examined our case records and found 35 such cases. From this group, we excluded 5 cases because of incomplete data. Thus our final study group was made up of 30 patients-14 males and 16 females, aged 14 to 76 years (mean: 51.6; median 54). The primary presenting signs and symptoms were dysphagia (n = 17 [57%]), a neck mass (n = 7 [23%]), nasal symptoms (n = 5 [17%]), and pain (n = 1 [3%]). Only 4 patients (13%) had B symptoms. A total of 20 patients (67%) presented with tonsillar involvement, 8 (27%) with nasopharyngeal involvement, 1 (3%) with tongue base lymphoma, and 1 with anterior tongue involvement. Most patients (77%) presented at an early stage. Histologically, 25 patients (83%) had high-grade diffuse large B-cell lymphoma, 4 (13%) had T-cell lymphoblastic lymphoma, and 1 (3%) had follicular lymphoma. Twenty-one patients (70%) were treated with chemotherapy, 4 (13%) received adjuvant chemotherapy with either radiotherapy or surgery, 3 (10%) resorted to other forms of treatment (primarily traditional remedies), and 2 (7%) declined treatment altogether. There were 14 patients (47%) alive at the end of the study period.
Alteration of the lipid content and fatty acid (FA) composition of foods can result in a healthier product. The aim of this study was to determine the effect of flaxseed oil or sunflower oil in the goat diet on fatty acid composition of muscle and expression of lipogenic genes in the semitendinosus (ST) muscle. Twenty-one entire male Boer kid goats were fed diets containing different levels of linoleic acid (LA) and α-linolenic acid (LNA) for 100 days. Inclusion of flaxseed oil increased (p < 0.05) the α-linolenic acid (C18:3n-3) concentration in the ST muscle. The diet high in α-linolenic acid (p < 0.05) decreased the arachidonic acid (C20:4n-6) and conjugated linolenic acid (CLA) c-9 t-11 content in the ST muscle. There was a significant (p < 0.05) upregulation of PPARα and PPARγ gene expression and downregulation of stearoyl-CoA desaturase (SCD) gene in the ST muscle for the high α-linolenic acid group compared with the low α-linolenic acid group. The results of the present study show that flaxseed oil as a source of α-linolenic acid can be incorporated into the diets of goats to enrich goat meat with n-3 fatty acids, upregulate the PPARα and PPARγ, and downregulate the SCD gene expression.
Angiogenesis, which is required for physiological events, plays a crucial role in several pathological conditions, such as tumor growth and metastasis. The use of plant extracts is a cost effective and eco-friendly way to synthesize nanoparticles. In the present study, we investigated the anti-angiogenesis properties of silver nanoparticles synthesized using Saliva officinalis extract on chick chorioalantoic membrane. The production of nanoparticles was confirmed by the color change from yellow to brown observed after approximately 3 h at 37 °C. Then, the nanoparticles were characterized by UV-visible spectroscopy, FTIR, and TEM. The UV-visible spectroscopy results showed that the surface plasmon resonance band for AgNPs was around 430 nm. The intensity of the AgNP-specific absorption peak improved with an increase of 0.5 mL of extract into 10 mL of AgNO3 (2.5 mM). The FTIR results showed good interaction between the plant extracts and AgNPs. The TEM images of the samples revealed that the NPs varied in morphology and size from 1 to 40 nm; the average was recorded at 16.5 ± 1.2 nm. Forty Ross fertilized eggs were divided into four groups; the control and three experimental groups. On the 8th day, gelatin sponges containing albumin were placed on the chorioalantoic membrane and soaked with different concentrations of NPs. On the 12th day, all the cases were photographed using a photostereomicroscope. The number and the lengths of the vessels were measured using Image J software. The crown rump (CR) and weight of the embryo were also recorded. Then the hemoglobin content was measured using Drabkin's reagent kit for quantification of the blood vessel formation. According to the data analysis, the number and length of the blood vessels, as well as the CR and weight of the embryos reduced significantly compared to the control (p < 0.05), dose dependently. The total hemoglobin was quantified as an indicator of the blood vessel formation. The hemoglobin content in the treated samples with AgNPs decreased, which showed its inhibitory effect on angiogenesis.
MeSH terms: Allantoin; Animals; Chick Embryo; Chorion/drug effects*; Plant Extracts/pharmacology*; Silver/chemistry*; Spectrophotometry, Ultraviolet; Angiogenesis Inhibitors/pharmacology*; Salvia officinalis/chemistry*; Metal Nanoparticles*
The anti-inflammatory drug predinisolone (1) was reduced to 20β-hydroxyprednisolone (2) by the marine endophytic fungus Penicilium lapidosum isolated from an alga. The structural elucidation of 2 was achieved by 1D- and 2D-NMR, MS, IR data. Although, 2 is a known compound previously obtained through microbial transformation, the data provided failed to prove the C20 stereochemistry. To solve this issue, DFT and TD-DFT calculations have been carried out at the B3LYP/6-31+G (d,p) level of theory in gas and solvent phase. The absolute configuration of C20 was eventually assigned by combining experimental and calculated electronic circular dichroism spectra and 3JHH chemical coupling constants.
MeSH terms: Base Sequence; Marine Biology*; Magnetic Resonance Spectroscopy; Penicillium/metabolism*; Prednisolone/analogs & derivatives*; Prednisolone/metabolism; Prednisolone/chemistry; Spectrophotometry, Infrared; Spectrophotometry, Ultraviolet; DNA Primers; Spectrometry, Mass, Electrospray Ionization