Browse publications by year: 2017

  1. Tan CW, Sam IC, Chong WL, Lee VS, Chan YF
    Antiviral Res, 2017 07;143:186-194.
    PMID: 28457855 DOI: 10.1016/j.antiviral.2017.04.017
    Zika virus (ZIKV) is an arthropod-borne flavivirus that causes newborn microcephaly and Guillian-Barré syndrome in adults. No therapeutics are available to treat ZIKV infection or other flaviviruses. In this study, we explored the inhibitory effect of glycosaminoglycans and analogues against ZIKV infection. Highly sulfated heparin, dextran sulfate and suramin significantly inhibited ZIKV infection in Vero cells. De-sulfated heparin analogues lose inhibitory effect, implying that sulfonate groups are critical for viral inhibition. Suramin, an FDA-approved anti-parasitic drug, inhibits ZIKV infection with 3-5 log10 PFU viral reduction with IC50value of ∼2.5-5 μg/ml (1.93 μM-3.85 μM). A time-of-drug-addition study revealed that suramin remains potent even when administrated at 1-24 hpi. Suramin inhibits ZIKV infection by preventing viral adsorption, entry and replication. Molecular dynamics simulation revealed stronger interaction of suramin with ZIKV NS3 helicase than with the envelope protein. Suramin warrants further investigation as a potential antiviral candidate for ZIKV infection. Heparan sulfate (HS) is a cellular attachment receptor for multiple flaviviruses. However, no direct ZIKV-heparin interaction was observed in heparin-binding analysis, and downregulate or removal of cellular HS with sodium chlorate or heparinase I/III did not inhibit ZIKV infection. This indicates that cell surface HS is not utilized by ZIKV as an attachment receptor.
    MeSH terms: Zika Virus Infection/prevention & control*; Zika Virus Infection/virology; Zika Virus/drug effects*; Zika Virus/physiology; Animals; Antibodies, Viral; Cercopithecus aethiops; Chlorates/pharmacology; DNA Helicases/metabolism; Flavivirus/drug effects; Glycosaminoglycans/pharmacology; Heparin/analogs & derivatives; Heparin/pharmacology; Heparin/chemistry; Heparitin Sulfate/pharmacology; Serine Endopeptidases/drug effects; Serine Endopeptidases/chemistry; Suramin/administration & dosage; Suramin/antagonists & inhibitors*; Vero Cells; Viral Envelope Proteins/metabolism; Virus Replication/drug effects; Dextran Sulfate/antagonists & inhibitors; Viral Nonstructural Proteins/drug effects; Viral Nonstructural Proteins/chemistry; Inhibitory Concentration 50; RNA Helicases/drug effects; RNA Helicases/chemistry; Mice; Virus Internalization/drug effects; Molecular Dynamics Simulation; Molecular Docking Simulation
  2. Amir-Hassan A, Lee VS, Baharuddin A, Othman S, Xu Y, Huang M, et al.
    J Mol Graph Model, 2017 06;74:273-287.
    PMID: 28458006 DOI: 10.1016/j.jmgm.2017.03.010
    Effective novel peptide inhibitors which targeted the domain III of the dengue envelope (E) protein by blocking dengue virus (DENV) entry into target cells, were identified. The binding affinities of these peptides towards E-protein were evaluated by using a combination of docking and explicit solvent molecular dynamics (MD) simulation methods. The interactions of these complexes were further investigated by using the Molecular Mechanics-Poisson Boltzmann Surface Area (MMPBSA) and Molecular Mechanics Generalized Born Surface Area (MMGBSA) methods. Free energy calculations of the peptides interacting with the E-protein demonstrated that van der Waals (vdW) and electrostatic interactions were the main driving forces stabilizing the complexes. Interestingly, calculated binding free energies showed good agreement with the experimental dissociation constant (Kd) values. Our results also demonstrated that specific residues might play a crucial role in the effective binding interactions. Thus, this study has demonstrated that a combination of docking and molecular dynamics simulations can accelerate the identification process of peptides as potential inhibitors of dengue virus entry into host cells.
    MeSH terms: Amino Acid Sequence; Antiviral Agents/chemistry*; Binding Sites; Dengue Virus/chemistry*; Hydrogen Bonding; Peptides/chemistry; Protein Binding; Thermodynamics; Viral Envelope Proteins/chemistry*; Molecular Dynamics Simulation; Molecular Docking Simulation; Protein Conformation, beta-Strand
  3. Aziz NFHA, Abbasiliasi S, Ng HS, Phapugrangkul P, Bakar MHA, Tam YJ, et al.
    J Chromatogr B Analyt Technol Biomed Life Sci, 2017 Jun 15;1055-1056:104-112.
    PMID: 28458127 DOI: 10.1016/j.jchromb.2017.04.029
    The partitioning of β-mannanase derived from Bacillus subtilis ATCC 11774 in aqueous two-phase system (ATPS) was studied. The ATPS containing different molecular weight of polyethylene glycol (PEG) and types of salt were employed in this study. The PEG/salt composition for the partitioning of β-mannanase was optimized using response surface methodology. The study demonstrated that ATPS consists of 25% (w/w) of PEG 6000 and 12.52% (w/w) of potassium citrate is the optimum composition for the purification of β-mannanase with a purification fold (PF) of 2.28 and partition coefficient (K) of 1.14. The study on influences of pH and crude loading showed that ATPS with pH 8.0 and 1.5% (w/w) of crude loading gave highest PF of 3.1. To enhance the partitioning of β-mannanase, four ionic liquids namely 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim]BF4), 1-butyl-3-methylimidazolium bromide ([Bmim]Br), 1-ethyl-3-methylimidazolium bromide ([Emim]Br) was added into the system as an adjuvant. The highest recovery yield (89.65%) was obtained with addition of 3% (w/w) of [Bmim]BF4. The SDS-PAGE analysis revealed that the β-mannanase was successfully recovered in the top phase of ATPS with the molecular size of 36.7kDa. Therefore, ATPS demonstrated a simple and efficient approach for recovery and purification of β-mannanase from fermentation broth in one single-step strategy.
    MeSH terms: Bacillus subtilis/enzymology*; Bacillus subtilis/chemistry; Citrates/chemistry; Electrophoresis, Polyacrylamide Gel; Imidazoles/chemistry; Polyethylene Glycols/chemistry; Water/chemistry; beta-Mannosidase/isolation & purification*; beta-Mannosidase/chemistry; Ionic Liquids/chemistry*
  4. Shaarani FW, Bou JJ
    Sci Total Environ, 2017 Nov 15;598:931-936.
    PMID: 28458211 DOI: 10.1016/j.scitotenv.2017.04.184
    Although carbon dioxide (CO2) is well known as one of the major green-house gases, it is also an economical C1 resource. Thus, CO2has been regarded as an appealing starting material for the synthesis of polymers, like polycarbonates by the reaction with epoxides. Herein the reaction between natural epoxidized soybean oil (ESO), propylene oxide (PO) and CO2under high pressure (4.0MPa) with the presence of Co-Zn double metal cyanide (Co-Zn DMC) catalyst was studied. Temperature and reaction time were varied accordingly and the products obtained were characterized by FTIR, GPC and1H NMR. The results obtained indicate the formation of polycarbonates in the samples collected with yields vary from 60 to 85%. The number average molecular weight (Mn) of the resultant polymer prepared at reaction temperature of 80°C and reaction time of 6h can reach up to 6498g/mol.
    MeSH terms: Carbon Dioxide; Cyanides; Epoxy Compounds; Gases; Molecular Weight; Magnetic Resonance Spectroscopy; Polycarboxylate Cement; Polymers; Reaction Time; Soybean Oil; Temperature; Zinc; Spectroscopy, Fourier Transform Infrared
  5. Kandiah N, Pai MC, Senanarong V, Looi I, Ampil E, Park KW, et al.
    Clin Interv Aging, 2017;12:697-707.
    PMID: 28458525 DOI: 10.2147/CIA.S129145
    Several studies have demonstrated clinical benefits of sustained cholinesterase inhibition with rivastigmine in Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). Unlike donepezil and galantamine that selectively inhibit acetylcholinesterase (AChE; EC 3.1.1.7), rivastigmine is a unique cholinesterase inhibitor with both AChE and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibitory activity. Rivastigmine is also available as transdermal patch that has been approved by the US Food and Drug Administration for the treatment of mild, moderate, and severe AD as well as mild-to-moderate PDD. In this review, we explore the role of BuChE inhibition in addition to AChE inhibition with rivastigmine in the outcomes of cognition, global function, behavioral symptoms, and activities of daily living. Additionally, we review the evidence supporting the use of dual AChE-BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD) and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD) with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations.
    MeSH terms: Rivastigmine/pharmacology*; Rivastigmine/therapeutic use*; Acetylcholinesterase/metabolism; Activities of Daily Living; Alzheimer Disease/drug therapy; Behavioral Symptoms; Butyrylcholinesterase/metabolism; Cholinesterase Inhibitors/pharmacology*; Cholinesterase Inhibitors/therapeutic use*; Cognition; Dementia/drug therapy*; Humans; Parkinson Disease/drug therapy; Dementia, Vascular/drug therapy
  6. Bong IPN, Ng CC, Baharuddin P, Zakaria Z
    Genes Genomics, 2017;39(5):533-540.
    PMID: 28458781 DOI: 10.1007/s13258-017-0518-7
    Epigenetic changes have emerged as key causes in the development and progression of multiple myeloma (MM). In this study, global microRNA (miRNA) expression profiling were performed for 27 MM (19 specimens and 8 cell lines) and 3 normal controls by microarray. miRNA-targets were identified by integrating the miRNA expression profiles with mRNA expression profiles of the matched samples (unpublished data). Two miRNAs were selected for verification by RT-qPCR (miR-150-5p and miR-4430). A total of 1791 and 8 miRNAs were over-expressed and under-expressed, respectively in MM compared to the controls (fold change ≥2.0; p 
  7. Shrivastava AK, Kumar S, Smith WA, Sahu PS
    Trop Parasitol, 2017 Jan-Jun;7(1):8-17.
    PMID: 28459010 DOI: 10.4103/2229-5070.202290
    Cryptosporidiosis is a gastrointestinal illness caused by the protozoan parasite Cryptosporidium species, which is a leading cause of diarrhea in a variety of vertebrate hosts. The primary mode of transmission is through oral routes; infections spread with the ingestion of oocysts by susceptible animals or humans. In humans, Cryptosporidium infections are commonly found in children and immunocompromised individuals. The small intestine is the most common primary site of infection in humans while extraintestinal cryptosporidiosis occurs in immunocompromised individuals affecting the biliary tract, lungs, or pancreas. Both innate and adaptive immune responses play a critical role in parasite clearance as evident from studies with experimental infection in mice. However, the cellular immune responses induced during human infections are poorly understood. In this article, we review the currently available information with regard to epidemiology, diagnosis, therapeutic interventions, and strategies being used to control cryptosporidiosis infection. Since cryptosporidiosis may spread through zoonotic mode, we emphasis on more epidemiological surveillance-based studies in developing countries with poor sanitation and hygiene. These epidemiological surveys must incorporate fecal source tracking measures to identify animal and human populations contributing significantly to the fecal burden in the community, as mitigation measures differ by host type.
    MeSH terms: Animals; Biliary Tract; Child; Cryptosporidiosis; Cryptosporidium; Developing Countries; Diarrhea; Humans; Hygiene; Immunity, Cellular; Intestine, Small; Parasites; Surveys and Questionnaires; Sanitation; Vertebrates; Epidemiologic Studies; Oocysts; Mice; Immunity, Humoral
  8. Anbu P, Gopinath SCB, Chaulagain BP, Lakshmipriya T
    Biomed Res Int, 2017 03 28;2017:2195808.
    PMID: 28459056 DOI: 10.1155/2017/2195808
    MeSH terms: Bacteria/enzymology*; Bacterial Proteins/therapeutic use*; Bacterial Proteins/chemistry*; Fungal Proteins/therapeutic use*; Fungal Proteins/chemistry*; Fungi/enzymology*
  9. Rosli R, Tan MP, Gray WK, Subramanian P, Mohd Hairi NN, Chin AV
    Clin Gerontol, 2017 03 29;40(4):249-257.
    PMID: 28459304 DOI: 10.1080/07317115.2017.1311978
    OBJECTIVES: To pilot two new cognitive screening tools for use in an urban Malaysian population and to compare their criterion validity against a gold standard, the well-established Mini-Mental State Examination (MMSE).

    METHODS: The IDEA cognitive screen, Picture-based Memory Impairment Scale (PMIS), and MMSE were administered to a convenience sample of elderly (≥ 65 years) from the community and outpatient clinics at an urban teaching hospital. Consensus diagnosis was performed by two geriatricians blinded to PMIS and IDEA cognitive screen scores using the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) clinical criteria. The MMSE performance was used as a reference.

    RESULTS: The study enrolled 66 participants, with a median age of 78.5 years (interquartile range [IQR], 72.5-83.0) years and 11.0 median years of education (IQR, 9.0-13.0). Forty-three (65.2%) were female, and 32 (48.4%) were Chinese. The area under the receiver operating characteristic (AUROC) curve values were .962 (IDEA cognitive screen), .970 (PMIS), and .935 (MMSE). The optimal cutoff values for sensitivity and specificity were: IDEA cognitive screen: ≤ 11, 90.9% and 89.7%; PMIS: ≤ 6, 97.3% and 69.0%; and MMSE: ≤ 23, 84.6% and 76.0%. Although the sample size was small, multivariable logistic regression modelling suggested that all three screen scores did not appear to be educationally biased.

    CONCLUSION: The IDEA and PMIS tools are potentially valid screening tools for dementia in urban Malaysia, and perform at least as well as the MMSE. Further work on larger representative, cohorts is needed to further assess the psychometric properties.

    CLINICAL IMPLICATIONS: Study provides alternative screening tools for dementia for both non-specialists and specialists.
    MeSH terms: Aged; Aged, 80 and over; Cognition/physiology; Cross-Sectional Studies; Dementia/diagnosis*; Dementia/ethnology; Female; Hospitals, University; Humans; Malaysia/epidemiology; Male; Mass Screening/instrumentation*; Mass Screening/methods; Memory Disorders/classification; Memory Disorders/diagnosis*; Outpatient Clinics, Hospital; Psychometrics/instrumentation; Psychometrics/methods; Sensitivity and Specificity; Mild Cognitive Impairment/diagnosis*; Mild Cognitive Impairment/ethnology
  10. Shokryazdan P, Faseleh Jahromi M, Liang JB, Ramasamy K, Sieo CC, Ho YW
    PLoS One, 2017;12(5):e0175959.
    PMID: 28459856 DOI: 10.1371/journal.pone.0175959
    The ban or severe restriction on the use of antibiotics in poultry feeds to promote growth has led to considerable interest to find alternative approaches. Probiotics have been considered as such alternatives. In the present study, the effects of a Lactobacillus mixture composed from three previously isolated Lactobacillus salivarius strains (CI1, CI2 and CI3) from chicken intestines on performance, intestinal health status and serum lipids of broiler chickens has been evaluated. Supplementation of the mixture at a concentration of 0.5 or 1 g kg-1 of diet to broilers for 42 days improved body weight, body weight gain and FCR, reduced total cholesterol, LDL-cholesterol and triglycerides, increased populations of beneficial bacteria such as lactobacilli and bifidobacteria, decreased harmful bacteria such as E. coli and total aerobes, reduced harmful cecal bacterial enzymes such as β-glucosidase and β-glucuronidase, and improved intestinal histomorphology of broilers. Because of its remarkable efficacy on broiler chickens, the L. salivarius mixture could be considered as a good potential probiotic for chickens, and its benefits should be further evaluated on a commercial scale.
    MeSH terms: Gastrointestinal Microbiome/genetics; Agriculture; Animals; Animal Feed/microbiology*; beta-Glucosidase/metabolism; Chickens/anatomy & histology; Chickens/blood; Chickens/microbiology*; Chickens/physiology*; Cholesterol/blood; Glucuronidase/metabolism; Intestines/anatomy & histology; Intestines/enzymology; Intestines/microbiology; Lipids/blood*; Male; Random Allocation; Weight Gain; Probiotics/administration & dosage*; Real-Time Polymerase Chain Reaction; Lactobacillus salivarius*
  11. Thor JA, Mohamed Hanapi NH, Halil H, Suhaimi A
    Pain Med, 2017 10 01;18(10):2041-2045.
    PMID: 28460075 DOI: 10.1093/pm/pnx063
    MeSH terms: Ankle/blood supply; Foot/blood supply; Foot/surgery*; Humans; Injections/methods; Pain/diagnosis; Pain/drug therapy*; Treatment Outcome; Complex Regional Pain Syndromes/diagnosis; Complex Regional Pain Syndromes/drug therapy*
  12. Bello MM, Abdul Raman AA
    J Environ Manage, 2017 Aug 01;198(Pt 1):170-182.
    PMID: 28460324 DOI: 10.1016/j.jenvman.2017.04.050
    Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges.
    MeSH terms: Industrial Waste*; Plant Oils*; Waste Disposal, Fluid*; Ponds
  13. Sivanathan J, Thilaganathan B
    PMID: 28456373 DOI: 10.1016/j.bpobgyn.2017.03.005
    Prenatal diagnosis is a rapidly evolving speciality. Screening for aneuploidy begins with non-sonographic features of background risk of maternal age and past and family history. It is possible to diagnose major structural defects in the foetus using second trimester scans. Serum biochemistry markers in the early second trimester were added to increase the detection rate of aneuploidy. However, as some of these abnormalities were amenable to detection earlier in the first trimester, newer modalities were introduced. Nuchal translucency (NT) measurement was one of the main advances with regard to first trimester screening. Additional markers such as the presence of nasal bone, tricuspid regurgitation, ductus venosus and megacystis; together with first trimester serum biochemistry, further enhanced the detection rate of chromosomal abnormalities. Advances in research and technology have resulted in the availability of non-invasive prenatal testing from 10 weeks of gestation. This has facilitated the detection of the three major chromosomal aneuploidies at very early gestation. However, there are a wide range of genetic syndromes that are not confined to the main trisomies. There are specific markers on ultrasound that can be linked to specific syndromes. Hence, a structured and stepwise approach is needed to identify and reach a possible diagnosis. As anomalies are classified into malformations, deformations and disruptions, it is important to note that not all markers detected are due to genetic syndromes and not all genetic syndromes can be detected on ultrasound scan. In this chapter, we outline common structural markers and their association with main genetic syndromes.
    MeSH terms: Congenital Abnormalities/embryology; Congenital Abnormalities/genetics; Aneuploidy; Female; Genetic Markers*; Humans; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Prenatal Diagnosis/methods*; Biomarkers/blood; Ultrasonography, Prenatal*; Nuchal Translucency Measurement
  14. Md S, Haque S, Madheswaran T, Zeeshan F, Meka VS, Radhakrishnan AK, et al.
    Drug Discov Today, 2017 Aug;22(8):1274-1283.
    PMID: 28456749 DOI: 10.1016/j.drudis.2017.04.010
    Topical photodynamic therapy (PDT) is a non-invasive technique used in the treatment of malignant and non-malignant skin diseases. It offers great promise because of its simplicity, enhanced patient compliance, localisation of the photosensitizer, as well as the use of light and oxygen to achieve photocytotoxicity. Despite progress in photosensitizer-mediated topical PDT, its clinical application is limited by poor penetration of photosensitizers through the skin. Therefore, much effort has been made to develop nanocarriers that can tackle the challenges of conventional photosensitizer-mediated PDT for topical delivery. This review discusses recent data on the use of different types of lipid-based nanocarriers in delivering photosensitizer for topical PDT.
    MeSH terms: Administration, Topical; Animals; Drug Carriers/administration & dosage*; Drug Carriers/therapeutic use; Humans; Lipids/administration & dosage*; Lipids/therapeutic use; Skin Diseases/drug therapy; Photosensitizing Agents/administration & dosage*; Photosensitizing Agents/classification; Photosensitizing Agents/therapeutic use; Nanoparticles/administration & dosage*; Nanoparticles/therapeutic use
  15. Chong YL, Ng KH
    Virus Genes, 2017 Dec;53(6):774-777.
    PMID: 28456924 DOI: 10.1007/s11262-017-1459-6
    Human bocavirus (HBoV) is a single-stranded DNA virus in Parvoviridae family, causing respiratory diseases in human. The recent identifications of genomic recombination among the four human bocavirus genotypes and related non-human primate bocaviruses have shed lights into the evolutionary processes underpinning the diversity of primate bocavirus. Among these reports, however, we found inconsistency and possible alternative interpretations of the recombination events. In this study, these recombination events were reviewed, and the related genome sequences were re-analysed, aiming to inform the research community of bocavirus with more consistent knowledge and comprehensive interpretations on the recombination history of primate bocavirus.
    MeSH terms: Animals; Genotype; Humans; Primates/genetics*; Recombination, Genetic/genetics*; Genome, Viral/genetics*; Evolution, Molecular; Bocavirus/genetics*
  16. Misron K, Hamid SSA, Ahmad A, Ramli RR
    Clin Exp Otorhinolaryngol, 2017 Sep;10(3):241-247.
    PMID: 28449554 DOI: 10.21053/ceo.2016.01732
    OBJECTIVES: This case-controlled study aimed to identify the association of tumor necrosis factor (TNF)α-1031 and TNFβ+ 252 gene polymorphisms between chronic rhinosinusitis (CRS) and healthy controls. Another purpose of this study was to investigate the associations of these gene polymorphisms with factors related to CRS.

    METHODS: All deoxyribonucleic acid (DNA) samples were genotyped for TNFα-1031 and TNFβ+252 genes by mean of polymerase chain reaction (PCR) and restriction fragment length polymorphisms (RFLP). The statistical analysis were carried out using chi-square test or Fisher exact test to determine the associations of these gene polymorphisms in CRS. Multiple logistic regression was performed to evaluate the associations of these gene polymorphisms in CRS and its related risk factors.

    RESULTS: The genotype and allele frequencies of TNFα-1031 and TNFβ+252 gene did not show any significant associations between CRS and healthy controls. However, a significantly statistical difference of TNFα-1031 was observed in CRS participants with atopy (P-value, 0.045; odds ratio, 3.66) but not in CRS with asthma or aspirin intolerance.

    CONCLUSION: Although the presence of TNFα-1031 and TNFβ+252 gene polymorphisms did not render any significant associations between CRS and healthy control, this study suggests that TNFα-1031 gene polymorphisms in CRS patients with atopy may be associated with increase susceptibility towards CRS.

  17. Ralph AP, Rashid Ali MRS, William T, Piera K, Parameswaran U, Bird E, et al.
    BMC Infect Dis, 2017 04 27;17(1):312.
    PMID: 28449659 DOI: 10.1186/s12879-017-2314-z
    BACKGROUND: Vitamin D deficiency (low plasma 25-hydroxyvitamin D [25D] concentration) is often reported in tuberculosis. Adjunctive vitamin D has been tested for its potential to improve treatment outcomes, but has proven largely ineffective. To better understand vitamin D in tuberculosis, we investigated determinants of 25D and its immunologically active form, 1,25-dihydroxyvitamin D (1,25D), their inter-relationship in tuberculosis, longitudinal changes and association with outcome.
    METHODS: In a prospective observational study of adults with smear-positive pulmonary tuberculosis in Sabah, Malaysia, we measured serial 25D, 1,25D, vitamin D-binding protein (VDBP), albumin, calcium, parathyroid hormone, chest x-ray, week 8 sputum smear/culture and end-of-treatment outcome. Healthy control subjects were enrolled for comparison.
    RESULTS: 1,25D was elevated in 172 adults with tuberculosis (mean 229.0 pmol/L, 95% confidence interval: 215.4 - 242.6) compared with 95 controls (153.9, 138.4-169.4, p 
    MeSH terms: Adolescent; Adult; Aged; Ambulatory Care Facilities; Female; Humans; Malaysia; Male; Middle Aged; Parathyroid Hormone/blood; Prospective Studies; Tuberculosis, Pulmonary/blood*; Tuberculosis, Pulmonary/complications; Tuberculosis, Pulmonary/drug therapy*; Vitamin D/analogs & derivatives*; Vitamin D/blood; Vitamin D Deficiency/blood; Case-Control Studies; Treatment Outcome; Young Adult
  18. Veeraveedu PT, Sanada S, Okuda K, Fu HY, Matsuzaki T, Araki R, et al.
    Biochem Pharmacol, 2017 Aug 15;138:73-80.
    PMID: 28450225 DOI: 10.1016/j.bcp.2017.04.022
    BACKGROUND AND PURPOSE: ST2 is one of the interleukin (IL)-1 receptor family members comprising of membrane-bound (ST2L) and soluble (sST2) isoforms. Clinical trials have revealed that serum sST2 levels predict outcome in patient with myocardial infarction or chronic heart failure (HF). Meanwhile, we and others have reported that ablation of ST2 caused exaggerated cardiac remodeling in both ischemic and non-ischemic HF. Here, we tested whether IL-33, the ligand for ST2, protects myocardium against HF induced by mechanical overload using ligand specific knockout (IL-33(-/-)) mice.

    METHODS AND RESULTS: Transverse aortic constriction (TAC)/sham surgery were carried out in both IL-33 and WT-littermates. Echocardiographic measurements were performed at frequent interval during the study period. Heart was harvested for RNA and histological measurements. Following mechanical overload by TAC, myocardial mRNA expressions of Th1 cytokines, such as TNF-α were enhanced in IL-33(-/-) mice than in WT mice. After 8-weeks, IL-33(-/-) mice exhibited exacerbated left ventricular hypertrophy, increased chamber dilation, reduced fractional shortening, aggravated fibrosis, inflammation, and impaired survival compared with WT littermates. Accordingly, myocardial mRNA expressions of hypertrophic (c-Myc/BNP) molecular markers were also significantly enhanced in IL-33(-/-) mice than those in WT mice.

    CONCLUSIONS: We report for the first time that ablation of IL-33 directly and significantly leads to exacerbate cardiac remodeling with impaired cardiac function and survival upon mechanical stress. These data highlight the cardioprotective role of IL-33/ST2 system in the stressed myocardium and reveal a potential therapeutic role for IL-33 in non-ischemic HF.

    MeSH terms: Interleukin-33/genetics; Interleukin-33/metabolism*; Animals; Disease Models, Animal*; Fibrosis; Gene Expression Regulation; Heart/physiopathology; Heart Failure/etiology; Heart Failure/metabolism*; Heart Failure/pathology; Heart Failure/physiopathology; Ligands; Myocardium/immunology; Myocardium/metabolism*; Myocardium/pathology; RNA, Messenger/metabolism; Tumor Necrosis Factor-alpha/genetics; Tumor Necrosis Factor-alpha/metabolism; Signal Transduction*; Biomarkers/metabolism; Survival Analysis; Hypertrophy, Left Ventricular/physiopathology; Mice, Knockout; Th1 Cells/immunology; Th1 Cells/metabolism; Mice; Atrial Remodeling*; Interleukin-1 Receptor-Like 1 Protein/metabolism; Interleukin-1 Receptor-Like 1 Protein/agonists*
  19. Pandy V, Narasingam M, Vijeepallam K, Mohan S, Mani V, Mohamed Z
    Exp Anim, 2017 Aug 05;66(3):283-291.
    PMID: 28450692 DOI: 10.1538/expanim.16-0105
    In earlier ex vivo studies, we reported the biphasic effect of a methanolic extract of unripe Morinda citrifolia fruit (MMC) on dopamine-induced contractility in isolated rat vas deferens preparations. The present in vivo study was designed and undertaken to further explore our earlier ex vivo findings. This study examined the effect of the ethyl acetate fraction of a methanolic extract of unripe Morinda citrifolia Linn. fruit (EA-MMC; 5-100 mg/kg, p.o.) on the dopaminergic system using mouse models of apomorphine-induced climbing time and climbing behavior, methamphetamine-induced stereotypy (sniffing, biting, gnawing, and licking) and haloperidol-induced catalepsy using the bar test. Acute treatment with EA-MMC at a low dose (25 mg/kg, p.o.) significantly attenuated the apomorphine-induced climbing time and climbing behavior in mice. Similarly, EA-MMC (5 and 10 mg/kg, p.o.) significantly inhibited methamphetamine-induced stereotyped behavior in mice. These results demonstrated that the antidopaminergic effect of EA-MMC was observed at relatively lower doses (<25 mg/kg, p.o.). On the other hand, EA-MMC showed dopaminergic agonistic activity at a high dose (3,000 mg/kg, p.o.), which was evident from alleviation of haloperidol (a dopamine D2 blocker)-induced catalepsy in mice. Therefore, it is concluded that EA-MMC might possess a biphasic effect on the dopaminergic system, i.e., an antagonistic effect at lower doses (<25 mg/kg, p.o.) and an agonistic effect at higher doses (>1,000 mg/kg, p.o.). However, further receptor-ligand binding assays are necessary to confirm the biphasic effects of M. citrifolia fruit on the dopaminergic system.
    MeSH terms: Acetates; Methanol; Animals; Behavior, Animal/drug effects; Dose-Response Relationship, Drug; Chemical Fractionation; Male; Mice, Inbred ICR; Plant Extracts/pharmacology*; Stereotyped Behavior/drug effects; Dopamine Agonists*; Dopamine Antagonists*; Models, Animal; Morinda/chemistry*; Stair Climbing/drug effects
  20. Salama M, Sobh M, Emam M, Abdalla A, Sabry D, El-Gamal M, et al.
    Exp Ther Med, 2017 Mar;13(3):976-982.
    PMID: 28450929 DOI: 10.3892/etm.2017.4073
    Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. It affects the locomotor system, leading to a final severe disability through degeneration of dopaminergic neurons. Despite several therapeutic approaches used, no treatment has been proven to be effective; however, cell therapy may be a promising therapeutic method. In addition, the use of the intranasal (IN) route has been advocated for delivering various therapies to the brain. In the present study, the IN route was used for administration of mesenchymal stem cells (MSCs) in a mouse model of PD, with the aim to evaluate IN delivery as an alternative route for cell based therapy administration in PD. The PD model was developed in C57BL/6 mice using intraperitoneal rotenone administration for 60 consecutive days. MSCs were isolated from the mononuclear cell fraction of pooled bone marrow from C57BL/6 mice and incubated with micrometer-sized iron oxide (MPIO) particles. For IN administration, we used a 20 µl of 5×10(5) cell suspension. Neurobehavioral assessment of the mice was performed, and after sacrifice, brain sections were stained with Prussian blue to detect the MPIO-labeled MSCs. In addition, immunohistochemical evaluation was conducted to detect tyrosine hydroxylase (TH) antibodies in the corpus striatum and dopaminergic neurons in the substantia nigra pars compacta (SNpc). The neurobehavioral assessment revealed progressive deterioration in the locomotor functions of the rotenone group, which was improved following MSC administration. Histopathological evaluation of brain sections in the rotenone+MSC group revealed successful delivery of MSCs, evidenced by positive Prussian blue staining. Furthermore, rotenone treatment led to significant decrease in dopaminergic neuron number in SNpc, as well as similar decrease in the corpus striatum fiber density. By contrast, in animals receiving IN administration of MSCs, the degeneration caused by rotenone treatment was significantly counteracted. In conclusion, the present study validated that IN delivery of MSCs may be a potential safe, easy and cheap alternative route for stem cell treatment in neurodegenerative disorders.
    MeSH terms: Administration, Intranasal; Animals; Bone Marrow; Corpus Striatum; Ferric Compounds; Ferrocyanides; Mice, Inbred C57BL; Parkinson Disease; Rotenone; Tyrosine 3-Monooxygenase; Neurodegenerative Diseases; Mice; Dopaminergic Neurons; Pars Compacta
External Links