Browse publications by year: 2018

  1. Zukerman-Schpector J, Dias CDS, Schwab RS, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Sep 01;74(Pt 9):1195-1200.
    PMID: 30225098 DOI: 10.1107/S2056989018010885
    The title compound, C12H10N4O, comprises a central 1,2,3-triazole ring (r.m.s. deviation = 0.0030 Å) flanked by N-bound 4-cyano-phenyl and C-bound acetyl groups, which make dihedral angles of 54.64 (5) and 6.8 (3)° with the five-membered ring, indicating a twisted mol-ecule. In the crystal, the three-dimensional architecture is sustained by carbonyl-C=O⋯π(triazo-yl), cyano-C≡N⋯π(triazo-yl) (these inter-actions are shown to be attractive based on non-covalent inter-action plots) and π-π stacking inter-actions [inter-centroid separation = 3.9242 (9) Å]. An analysis of the Hirshfeld surface shows the important contributions made by H⋯H (35.9%) and N⋯H (26.2%) contacts to the overall surface, as well as notable contributions by O⋯H (9.9%), C⋯H (8.7%), C⋯C (7.3%) and C⋯N (7.2%) contacts.
  2. Murthy TNS, Atioğlu Z, Akkurt M, Chidan Kumar CS, Veeraiah MK, Quah CK, et al.
    Acta Crystallogr E Crystallogr Commun, 2018 Sep 01;74(Pt 9):1201-1205.
    PMID: 30225099 DOI: 10.1107/S2056989018010976
    The mol-ecular structure of the title compound, C13H6Cl4OS, consists of a 2,5-di-chloro-thio-phene ring and a 2,4-di-chloro-phenyl ring linked via a prop-2-en-1-one spacer. The dihedral angle between the 2,5-di-chloro-thio-phene ring and the 2,4-di-chloro-phenyl ring is 12.24 (15)°. The mol-ecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The mol-ecular conformation is stabilized by intra-molecular C-H⋯Cl contacts, producing S(6) and S(5) ring motifs. In the crystal, the mol-ecules are linked along the a-axis direction through face-to-face π-stacking between the thio-phene rings and the benzene rings of the mol-ecules in zigzag sheets lying parallel to the bc plane along the c axis. The inter-molecular inter-actions in the crystal packing were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are Cl⋯H/ H⋯Cl (20.8%), followed by Cl⋯Cl (18.7%), C⋯C (11.9%), Cl⋯S/S⋯Cl (10.9%), H⋯H (10.1%), C⋯H/H⋯C (9.3%) and O⋯H/H⋯O (7.6%).
  3. Ramani VC, Shah RD, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Sep 01;74(Pt 9):1254-1258.
    PMID: 30225111 DOI: 10.1107/S2056989018011477
    The title compound, C16H15N5O2, adopts the shape of the letter L with the dihedral angle between the outer pyridyl rings being 78.37 (5)°; the dihedral angles between the central pyrazolyl ring (r.m.s. deviation = 0.0023 Å) and the methyl-ene-bound pyridyl and methyoxypyridyl rings are 77.68 (5) and 7.84 (10)°, respectively. Intra-molecular amide-N-H⋯N(pyrazol-yl) and pyridyl-C-H⋯O(amide) inter-actions are evident and these preclude the participation of the amide-N-H and O atoms in inter-molecular inter-actions. The most notable feature of the mol-ecular packing is the formation of linear supra-molecular chains aligned along the b-axis direction mediated by weak carbonyl-C=O⋯π(triazol-yl) inter-actions. An analysis of the calculated Hirshfeld surfaces point to the importance of H⋯H (46.4%), C⋯H (22.4%), O⋯H (11.9%) and N⋯H (11.1%) contacts in the crystal.
    MeSH terms: Amides; Pyrazoles
  4. Zainuri DA, Razak IA, Arshad S
    Acta Crystallogr E Crystallogr Commun, 2018 Sep 01;74(Pt 9):1302-1308.
    PMID: 30225122 DOI: 10.1107/S2056989018011131
    The title chalcones, C31H23NO and C35H23NO, were synthesized via Claisen-Schmidt condensation reactions. Both structures were solved and refined using single-crystal X-ray diffraction data and optimized at the ground state using the density functional theory (DFT) method with the B3LYP/6-311++G(d,p) level. In the crystals, π-π inter-ations and weak C-H⋯O and C-H⋯π inter-actions are observed. The effect of these inter-molecular inter-actions in the solid state can be seen by the difference between the experimental and theoretical optimized geometrical parameters. The structures have also been characterized by UV-Vis spectroscopy. The smallest energy gaps of 2.86 and 2.96 eV enhance the nonlinear responses of such mol-ecular systems. Hirshfeld surface analyses and 2D (two-dimensional) fingerprint plots were used to qu-antify the inter-molecular inter-actions present in the crystal, indicating that these are the most important contribution to the crystal packing.
  5. Mustapha M, Abdollah Z, Ahem A, Mohd Isa H, Bastion MC, Din NM
    Int J Ophthalmol, 2018;11(9):1573-1576.
    PMID: 30225238 DOI: 10.18240/ijo.2018.09.25
  6. Azami G, Soh KL, Sazlina SG, Salmiah MS, Aazami S, Mozafari M, et al.
    J Diabetes Res, 2018;2018:4930157.
    PMID: 30225268 DOI: 10.1155/2018/4930157
    In recent years, great emphasis has been placed on the role of nonpharmacological self-management in the care of patients with diabetes. Studies have reported that nurses, compared to other healthcare professionals, are more likely to promote preventive healthcare seeking behaviors. The aim of this study was to investigate the effectiveness of a nurse-led diabetes self-management education on glycosylated hemoglobin. A two-arm parallel-group randomized controlled trial with the blinded outcome assessors was designed. One hundred forty-two adults with type 2 diabetes were randomized to receive either usual diabetes care (control group) or usual care plus a nurse-led diabetes self-management education (intervention group). Duration of the intervention was 12 weeks. The primary outcome was glycosylated hemoglobin (HbA1c values). Secondary outcomes were changes in blood pressure, body weight, lipid profiles, self-efficacy (efficacy expectation and outcome expectation), self-management behaviors, quality of life, social support, and depression. Outcome measures were assessed at baseline and at 12-week and 24-week postrandomizations. Patients in the intervention group showed significant improvement in HbA1c, blood pressure, body weight, efficacy expectation, outcome expectation, and diabetes self-management behaviors. The beneficial effect of a nurse-led intervention continued to accrue beyond the end of the trial resulting in sustained improvements in clinical, lifestyle, and psychosocial outcomes. This trial is registered with IRCT2016062528627N1.
    MeSH terms: Adult; Aged; Blood Pressure; Depression/prevention & control; Depression/psychology; Diabetes Mellitus, Type 2/blood; Diabetes Mellitus, Type 2/nursing*; Diabetes Mellitus, Type 2/physiopathology; Diabetes Mellitus, Type 2/psychology; Female; Health Status; Hemoglobin A, Glycosylated/metabolism*; Humans; Health Knowledge, Attitudes, Practice; Leadership*; Lipids/blood; Malaysia; Male; Middle Aged; Patient Education as Topic/methods*; Quality of Life; Self Care/methods*; Social Support; Time Factors; Nursing Evaluation Research; Biomarkers/blood; Weight Loss; Treatment Outcome; Self Efficacy; Nurse's Role*
  7. Osman BE, Khalik WMAWM
    Data Brief, 2018 Oct;20:999-1003.
    PMID: 30225314 DOI: 10.1016/j.dib.2018.08.178
    The main goal of this research work is to measure the concentration levels of organochlorine residue in soil. The potential health risk of this pollutant on human was also determined. 10 samples were taken from a lowland paddy field situated in Kelantan, Malaysia. Physical parameters namely soil pH, organic carbon content, water content and particle size were identified to evaluate the quality of soil from the agriculture site. Soxhlet extraction and florisil clean-up process were applied to isolate 10 targeted organochlorine compounds prior to the final determination using a gas chromatography-electron capture detector. Soil from the lowland has characteristics such as slightly acidic, low organic carbon content, high water content and texture dominated by the sandy type. Concentration levels of six detected organochlorine pesticides were calculated in µg/kg. Hazard quotient value in all samples was less than the acceptable risk level HQ ≤ 1, thus reflecting the status of soil in the subjected area as unlikely to pose any adverse health effects.
    MeSH terms: Agriculture; Carbon; Chromatography, Gas; Electrons; Environmental Pollutants; Goals; Humans; Hydrocarbons, Chlorinated; Malaysia; Particle Size; Pesticides; Soil; Water; Magnesium Silicates
  8. Sadek MM, Barlow N, Leung EWW, Williams-Noonan BJ, Yap BK, Shariff FM, et al.
    ACS Chem. Biol., 2018 10 19;13(10):2930-2938.
    PMID: 30226743 DOI: 10.1021/acschembio.8b00561
    SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4 interact with inducible nitric oxide synthase (iNOS), causing the iNOS to be polyubiquitinated and targeted for degradation. Inhibition of this interaction increases iNOS levels, and consequently cellular nitric oxide (NO) concentrations, and has been proposed as a potential strategy for killing intracellular pathogens. We previously described two DINNN-containing cyclic peptides (CP1 and CP2) as potent inhibitors of the murine SPSB-iNOS interaction. In this study, we report the crystal structures of human SPSB4 bound to CP1 and CP2 and human SPSB2 bound to CP2. We then used these structures to design a new inhibitor in which an intramolecular hydrogen bond was replaced with a hydrocarbon linkage to form a smaller macrocycle while maintaining the bound geometry of CP2 observed in the crystal structures. This resulting pentapeptide SPSB-iNOS inhibitor (CP3) has a reduced macrocycle ring size, fewer nonbinding residues, and includes additional conformational constraints. CP3 has a greater affinity for SBSB2 ( KD = 7 nM as determined by surface plasmon resonance) and strongly inhibits the SPSB2-iNOS interaction in macrophage cell lysates. We have also determined the crystal structure of CP3 in complex with human SPSB2, which reveals the structural basis for the increased potency of CP3 and validates the original design.
    MeSH terms: RAW 264.7 Cells; Animals; Anti-Infective Agents/pharmacology; Anti-Infective Agents/chemistry*; Humans; Oligopeptides/pharmacology; Oligopeptides/chemistry*; Peptides, Cyclic/pharmacology; Peptides, Cyclic/chemistry*; Protein Binding; Drug Design; Intracellular Signaling Peptides and Proteins/metabolism; Intracellular Signaling Peptides and Proteins/chemistry*; Suppressor of Cytokine Signaling Proteins/metabolism; Suppressor of Cytokine Signaling Proteins/chemistry*; Mice; Nitric Oxide Synthase Type II/metabolism*
  9. Deschasaux M, Huybrechts I, Murphy N, Julia C, Hercberg S, Srour B, et al.
    PLoS Med, 2018 Sep;15(9):e1002651.
    PMID: 30226842 DOI: 10.1371/journal.pmed.1002651
    BACKGROUND: Helping consumers make healthier food choices is a key issue for the prevention of cancer and other diseases. In many countries, political authorities are considering the implementation of a simplified labelling system to reflect the nutritional quality of food products. The Nutri-Score, a five-colour nutrition label, is derived from the Nutrient Profiling System of the British Food Standards Agency (modified version) (FSAm-NPS). How the consumption of foods with high/low FSAm-NPS relates to cancer risk has been studied in national/regional cohorts but has not been characterized in diverse European populations.

    METHODS AND FINDINGS: This prospective analysis included 471,495 adults from the European Prospective Investigation into Cancer and Nutrition (EPIC, 1992-2014, median follow-up: 15.3 y), among whom there were 49,794 incident cancer cases (main locations: breast, n = 12,063; prostate, n = 6,745; colon-rectum, n = 5,806). Usual food intakes were assessed with standardized country-specific diet assessment methods. The FSAm-NPS was calculated for each food/beverage using their 100-g content in energy, sugar, saturated fatty acid, sodium, fibres, proteins, and fruits/vegetables/legumes/nuts. The FSAm-NPS scores of all food items usually consumed by a participant were averaged to obtain the individual FSAm-NPS Dietary Index (DI) scores. Multi-adjusted Cox proportional hazards models were computed. A higher FSAm-NPS DI score, reflecting a lower nutritional quality of the food consumed, was associated with a higher risk of total cancer (HRQ5 versus Q1 = 1.07; 95% CI 1.03-1.10, P-trend < 0.001). Absolute cancer rates in those with high and low (quintiles 5 and 1) FSAm-NPS DI scores were 81.4 and 69.5 cases/10,000 person-years, respectively. Higher FSAm-NPS DI scores were specifically associated with higher risks of cancers of the colon-rectum, upper aerodigestive tract and stomach, lung for men, and liver and postmenopausal breast for women (all P < 0.05). The main study limitation is that it was based on an observational cohort using self-reported dietary data obtained through a single baseline food frequency questionnaire; thus, exposure misclassification and residual confounding cannot be ruled out.

    CONCLUSIONS: In this large multinational European cohort, the consumption of food products with a higher FSAm-NPS score (lower nutritional quality) was associated with a higher risk of cancer. This supports the relevance of the FSAm-NPS as underlying nutrient profiling system for front-of-pack nutrition labels, as well as for other public health nutritional measures.

    MeSH terms: Adult; Europe/epidemiology; Female; Food Labeling; Food Preferences; Humans; Male; Middle Aged; Neoplasms/etiology*; Neoplasms/epidemiology; Neoplasms/prevention & control; Nutritive Value*; Prospective Studies; Risk Factors; Cohort Studies; Nutrition Policy
  10. Suppiah J, Ching SM, Amin-Nordin S, Mat-Nor LA, Ahmad-Najimudin NA, Low GK, et al.
    PLoS Negl Trop Dis, 2018 09;12(9):e0006817.
    PMID: 30226880 DOI: 10.1371/journal.pntd.0006817
    BACKGROUND: Malaysia experienced an unprecedented dengue outbreak from the year 2014 to 2016 that resulted in an enormous increase in the number of cases and mortality as compared to previous years. The causes that attribute to a dengue outbreak can be multifactorial. Viral factors, such as dengue serotype and genotype, are the components of interest in this study. Although only a small number of studies investigated the association between the serotype of dengue virus and clinical manifestations, none of these studies included analyses on dengue genotypes. The present study aims to investigate dengue serotype and genotype-specific clinical characteristics among dengue fever and severe dengue cases from two Malaysian tertiary hospitals between 2014 and mid-2017.

    METHODOLOGY AND PRINCIPAL FINDINGS: A total of 120 retrospective dengue serum specimens were subjected to serotyping and genotyping by Taqman Real-Time RT-PCR, sequencing and phylogenetic analysis. Subsequently, the dengue serotype and genotype data were statistically analyzed for 101 of 120 corresponding patients' clinical manifestations to generate a descriptive relation between the genetic components and clinical outcomes of dengue infected patients. During the study period, predominant dengue serotype and genotype were found to be DENV 1 genotype I. Additionally, non-severe clinical manifestations were commonly observed in patients infected with DENV 1 and DENV 3. Meanwhile, patients with DENV 2 infection showed significant warning signs and developed severe dengue (p = 0.007). Cases infected with DENV 2 were also commonly presented with persistent vomiting (p = 0.010), epigastric pain (p = 0.018), plasma leakage (p = 0.004) and shock (p = 0.038). Moreover, myalgia and arthralgia were highly prevalent among DENV 3 infection (p = 0.015; p = 0.014). The comparison of genotype-specific clinical manifestations showed that DENV 2 Cosmopolitan was significantly common among severe dengue patients. An association was also found between genotype I of DENV 3 and myalgia. In a similar vein, genotype III of DENV 3 was significantly common among patients with arthralgia.

    CONCLUSION: The current data contended that different dengue serotype and genotype had caused distinct clinical characteristics in infected patients.

    MeSH terms: Adolescent; Child; Dengue/pathology*; Dengue/virology*; Dengue Virus/classification*; Dengue Virus/genetics; Dengue Virus/immunology; Dengue Virus/isolation & purification*; Female; Genotype*; Humans; Malaysia; Male; Phylogeny; Retrospective Studies; Serotyping; Sequence Analysis, DNA; Reverse Transcriptase Polymerase Chain Reaction; Young Adult; Genotyping Techniques; Real-Time Polymerase Chain Reaction; Tertiary Care Centers; Serogroup*
  11. Chah, C.K., Ravoof, T.B.S.A., Veerakumarasivam, A.
    MyJurnal
    A novel nitrogen-sulphur macrocyclic Schiff base, 4,11,20,27-tetrathioxo3,12,19,28-tetrathia-5,6,9,10,21,22,25,26-octaazatricyclo[28.2.2.214,17]hexatriaconta 1(33),6,8,14(36),15,17(35),22,24,30(34),31-decaene-2,13,18,29-tetraone (TGSB) derived from terephthaloyl-bis-dithiocarbazate (TDTC) and glyoxal (ethane-1,2-dione) is synthesised via condensation. Metal complexes are formed by reacting the Schiff base with various metal salts such as Ru(III), Mo(V), Cd(II), Zn(II) and Cu(II). The complexes are expected to have a general formula of M2L or M3L with a square planar or square pyramidal geometry. These compounds were characterised by various physicochemical and spectroscopic techniques. From the data, it is concluded that the azomethine nitrogen atom and the thiolate sulphur atom from the ligand are bonded to the metal ion. In the IR spectra of the complexes, the presence of the C=N band in the region of 1600 cm-1 indicates the successful formation of the Schiff base. The structures of the Schiff base and metal complexes are confirmed via FT-IR, GC-MS and NMR spectroscopic analysis. The magnetic susceptibility measurements, electronic spectral data and molar conductivity analysis support the desired geometry of the complexes. The Schiff base and its metal complexes are evaluated for their biological activities against the invasive human bladder carcinoma cell line (EJ-28) and the minimuminvasive human bladder carcinoma cell line (RT-112). The RuTGSB and CdTGSB complexes showed selective activity against RT-112.
    MeSH terms: Azo Compounds; Urinary Bladder; Cell Line; Ethane; Glyoxal; Ligands; Gas Chromatography-Mass Spectrometry; Molar; Nitrogen; Salts; Schiff Bases; Sulfur; Thiosemicarbazones; Zinc; Spectroscopy, Fourier Transform Infrared; Coordination Complexes
  12. Das, Priscilla, Naing, Nyi Nyi, Nadiah Wan-Arfah, Noorjan, K.O.N., Kueh, Yee Cheng, Rasalingam, Kantha
    MyJurnal
    Astrocytic gliomas are the most common primary brain tumours that originated from human glial cells. The tumours rely upon endothelial progenitor cells (EPCs) for neoangiogenesis. This study aimed to investigate the association between tissue resident EPCs in a brain tumour and normal adjacent tissue in relation to age and grade of astrocytic glioma. Astrocytic glioma patients (n=22), grade I to grade IV were consented from Hospital Universiti Sains Malaysia. Brain tumour tissue and normal adjacent brain tissue samples were obtained from each patient during surgery. The EPCs were stained with CD133+ and VEGFR-2+ markers. The tissue residents EPCs for each sample were determined using the immunofluorescence microscopy method. The age of the patients increased by disease severity in the following order (Grade I: 21.33±20.79 years) < (Grade II: 46.50±0.707 years) < (Grade III: 47.38±11.95 years) < (Grade IV: 48.44 ±10.66 years). The EPCs in brain tumour correlated significantly with the age of the patients with positive correlation (Spearman’s rho correlation test, r=0.52; p=0.013). The tissue resident EPCs in the brain tumour (median=0.40, IqR=0.59) were significantly higher compared with the adjacent normal brain (median=0.067, IqR=0.29) (Wilcoxon Signed-Rank Test, Z stat=-3.587, p
  13. Cheah PL, Li J, Looi LM, Teoh KH, Ong DB, Arends MJ
    PeerJ, 2018;6:e5530.
    PMID: 30221090 DOI: 10.7717/peerj.5530
    Background: Except for a few studies with contradictory observations, information is lacking on the possibility of association between DNA mismatch repair (MMR) status and the presence of cancer stem cells in colorectal carcinoma (CRC), two important aspects in colorectal carcinogenesis.

    Methods: Eighty (40 right-sided and 40 left-sided) formalin-fixed, paraffin-embedded primary CRC were immunohistochemically studied for CD133, a putative CRC stem cell marker, and MMR proteins MLH1, MSH2, MSH6 and PMS2. CD133 expression was semi-quantitated for proportion of tumor immunopositivity on a scale of 0-5 and staining intensity on a scale of 0-3 with a final score (units) being the product of proportion and intensity of tumor staining. The tumor was considered immunopositive only when the tumor demonstrated moderate to strong intensity of CD133 staining (a decision made after analysis of CD133 expression in normal colon). Deficient MMR (dMMR) was interpreted as unequivocal loss of tumor nuclear staining for any MMR protein despite immunoreactivity in the internal positive controls.

    Results: CD133 was expressed in 36 (90.0%) left-sided and 28 (70.0%) right-sided tumors (p  0.05).

    Conclusion: Proficient MMR correlated with high levels of CD133-marked putative cancer stem cells in both right- and left-sided tumors, whereas significantly lower levels of CD133-marked putative cancer stem cells were associated with deficient MMR status in colorectal carcinomas found on the right.

    MeSH terms: Formaldehyde; Staining and Labeling; Neoplastic Stem Cells; Colorectal Neoplasms; Paraffin Embedding; MutS Homolog 2 Protein; DNA Mismatch Repair; Carcinogenesis; MutL Protein Homolog 1; Mismatch Repair Endonuclease PMS2
  14. Ashammakhi N, Ahadian S, Zengjie F, Suthiwanich K, Lorestani F, Orive G, et al.
    Biotechnol J, 2018 Dec;13(12):e1800148.
    PMID: 30221837 DOI: 10.1002/biot.201800148
    Three-dimensionally printed constructs are static and do not recapitulate the dynamic nature of tissues. Four-dimensional (4D) bioprinting has emerged to include conformational changes in printed structures in a predetermined fashion using stimuli-responsive biomaterials and/or cells. The ability to make such dynamic constructs would enable an individual to fabricate tissue structures that can undergo morphological changes. Furthermore, other fields (bioactuation, biorobotics, and biosensing) will benefit from developments in 4D bioprinting. Here, the authors discuss stimuli-responsive biomaterials as potential bioinks for 4D bioprinting. Natural cell forces can also be incorporated into 4D bioprinted structures. The authors introduce mathematical modeling to predict the transition and final state of 4D printed constructs. Different potential applications of 4D bioprinting are also described. Finally, the authors highlight future perspectives for this emerging technology in biomedicine.
    MeSH terms: Biocompatible Materials/chemistry; Humans; Models, Theoretical; Biosensing Techniques; Tissue Engineering; Bioprinting/trends*; Printing, Three-Dimensional
  15. Akram Al Abbar, Norshariza Nordin, Ngai, Siew Ching, Syahril Abdullah
    MyJurnal
    iPS cells were originally generated using monocistronic retroviral vectors carrying the Yamanaka factors ‘OSKM’. The development of a polycistronic viral vector with OSKM linked by 2A peptides has simplified reprogramming procedure and reduced the risk of multiple proviral integrations and insertional mutagenesis. In this study, we demonstrated the production of the polycistronic lentiviral vector encoding OSKM in a single cassette without a reporter gene or drug-based selection system. Syncytia formations were clearly seen following the co-transfection of a lentiviral plasmid construct with the structural and packaging plasmids. The virion was collected at 48 hours post-transfection. Afterwards, the viral titers were measured by the expression of Sox2 protein from transduced HT1080 cells. Subsequently, Oct4 expression was successfully detected in mouse fibroblasts in the range of 5, 10 and 20 MOIs with expression of 90.7%, 97.5% and 98%, respectively. The results obtained from this study could be used as a model for the production of OSKM lentiviral vector for newcomers to cellular reprogramming research.
  16. Siswanto, W.A., Syiddiq, M.
    MyJurnal
    This paper presents a mathematical model of the traditional musical instrument, the kompang. In this study, a mathematical model of the kompang membrane is developed to simulate the vibration of the kompang membrane in polar coordinates by implementing the Fourier-Bessel wave function. The wave equation in polar direction is applied to provide the vibration modes of the membrane with the corresponding natural frequencies of the circular membrane. The initial and boundary conditions are determined to allow the development of numerical equation based on kompang membrane attachment. The mathematical model is coded in Smath for the numerical analysis as well as the plotting tool. Two kompang membrane cases with different membrane materials i.e. goat-skin and x-ray film are tried to test the model. The Finite Element Method (FEM) programme, Mecway, shows that the natural frequencies and the corresponding mode shapes are comparable with those from the developed model.
    MeSH terms: Animals; Goats; Membranes; Models, Theoretical; Radiation; Vibration; X-Ray Film; Finite Element Analysis; Electromagnetic Phenomena
  17. Al-Aqeeli, Yousif H., Abd Aziz, S., Wayayok, Aimrun, Badronnisa Yusuf
    MyJurnal
    The objectives of this study were firstly, to develop a simulation model (SM) for a single reservoir to identify the standard operating policy (SOP) of a reservoir based on a monthly operating period, and secondly, to evaluate the performance of the proposed Makhoul reservoir using a Developed Simulation Model (DSM) in reducing flood risk. This reservoir is located on the River Tigris, approximately 180 km upstream of Baghdad, Iraq. The performance of the reservoir in reducing flood risk was evaluated using two designs and records of flood waves gathered over two years. The first design was the present one, while the second was developed by increasing the operational storage to its maximum, based on the digital maps of the region. The flows downstream of the reservoir were compared, with and without the reservoir in the two years in question. Four parameters resulting from the two designs were compared: storage, surface area, elevation and power. The results suggested that the reservoir would be ineffective in reducing flood risk, but it would have the ability to provide hydroelectric power using the two designs, with the new one showing better ability at doing this. The reservoir can also serve purposes such as irrigation, fish wealth development and recreation. This DSM proved its effectiveness in evaluating the performance of the single storage system used for reservoirs.
    MeSH terms: Animals; Fishes; Iraq; Recreation; Rivers; Physical Phenomena; Floods
  18. Balasingam, M.
    MyJurnal
    Researchers have in recent years pointed to microgravity as presenting a unique opportunity for better disease prevention and treatments. Spaceflight can induce many changes in human physiological systems. In particular, the cardiovascular system is especially affected by spaceflight due to changes at the cellular level. Endothelial cells are very sensitive to microgravity. Morphological and functional changes in endothelial cells have been extensively studied since they are believed to be the source of many cardiovascular diseases. Studies have also shown that endothelial cells play a key role in angiogenesis, which can be stimulated in a clinostat-induced microgravity environment. This is a review of studies, based on different research approaches, on human umbilical vein endothelial cells. The myriad molecular cascades and signalling pathways involving gene regulation, proteins, inflammatory response activation, alteration of endothelial behaviour, and cell senescence are highlighted. Age-related disorders experienced on earth are very similar to the changes induced in space by microgravity. As we seek solutions to medical problems, the most innovative and beneficial at present are in space medicines and therapies.
    MeSH terms: Aerospace Medicine; Cardiovascular Diseases; Cardiovascular System; Humans; Research Personnel; Space Flight; Weightlessness; Signal Transduction; Human Umbilical Vein Endothelial Cells
  19. Koohi, Sina Zangbari, Nor Asilah Wati Abdul Hamid, Mohamed Othman, Ibragimov, Gafurjan
    MyJurnal
    Heterogeneous parallel architecture (HPA) are inherently more complicated than their homogeneous counterpart. HPAs allow composition of conventional processors, with specialised processors that target particular types of task. However, this makes mapping and scheduling even more complicated and difficult in parallel applications. Therefore, it is crucial to use a robust modelling approach that can capture all the critical characteristics of the application and facilitate the achieving of optimal mapping. In this study, we perform a concise theoretical analysis as well as a comparison of the existing modelling approaches of parallel applications. The theoretical perspective includes both formal concepts and mathematical definitions based on existing scholarly literature. The important characteristics, success factors and challenges of these modelling approaches have been compared and categorised. The results of the theoretical analysis and comparisons show that the existing modelling approaches still need improvement in parallel application modelling in many aspects such as covered metrics and heterogeneity of processors and networks. Moreover, the results assist us to introduce a new approach, which improves the quality of mapping by taking heterogeneity in action and covering more metrics that help to justify the results in a more accurate way.
    MeSH terms: Publications
  20. Jamilu Bala Ahmed II, Pradhan, Biswajeet
    MyJurnal
    Reliance on modern sophisticated equipment for making ‘discoveries’ has limited the human power of observing subtle clues in the environment that are capable of saving cost and labour that come with researching new resources and methods to improve life for all. Due to the growing scarcity of potable water, especially in African and Asian countries, newer, cheaper and reliable methods of investigating groundwater resources are becoming critical. One such potentially promising method is mapping the distribution of termite mounds in the environment. Termite mounds are conspicuous landscape features in tropical and sub-tropical regions of the world. Built from surrounding soils by several species of termite, the properties of mound soil are relatively different from the surrounding soil in most cases, indicating improved hydraulic properties. In this paper, the aim is to review the possibility of employing termite mounds as prospecting tools for groundwater search from three spatial scales of observation. From assessing the smallest to the highest scale of observation, it can be concluded that termite mounds’ prospect as surface indicators of groundwater is apparent. Review findings indicate increased surface water infiltration, presence of riparian tree vegetation and other trees with tap-root system around termite mounds, linear assemblage of termite mounds along aquiferous dykes and seep-lines as well as the dependence of termites on water but avoidance of places with risk of inundation. Whether they indicate permanent groundwater reserves in all cases or whether all species depend largely on water for their metabolism is a subject for further research.
External Links