Browse publications by year: 2020

  1. Jeevanandam J, Chan YS, Danquah MK
    3 Biotech, 2020 Nov;10(11):489.
    PMID: 33123456 DOI: 10.1007/s13205-020-02480-2
    The present study investigates the cytotoxicity of hexagonal MgO nanoparticles synthesized via Amaranthus tricolor leaf extract and spherical MgO nanoparticles synthesized via Amaranthus blitum and Andrographis paniculata leaf extracts. In vitro cytotoxicity analysis showed that the hexagonal MgO nanoparticles synthesized from A. tricolor extract demonstrated the least toxicity to both diabetic and non-diabetic cells at 600 μl/ml dosage. The viability of the diabetic cells (3T3-L1) after incubation with varying dosages of MgO nanoparticles was observed to be 55.3%. The viability of normal VERO cells was 86.6% and this stabilized to about 75% even after exposure to MgO nanoparticles dosage of up to 1000 μl/ml. Colorimetric glucose assay revealed that the A. tricolor extract synthesized MgO nanoparticles resulted in ~ 28% insulin resistance reversal. A reduction in the expression of GLUT4 protein at 54 KDa after MgO nanopaSrticles incubation with diabetic cells was observed via western blot analysis to confirm insulin reversal ability. Fluorescence microscopic analysis with propidium iodide and acridine orange dyes showed the release of reactive oxygen species as a possible mechanism of the cytotoxic effect of MgO nanoparticles. It was inferred that the synergistic effect of the phytochemicals and MgO nanoparticles played a significant role in delivering enhanced insulin resistance reversal capability in adipose cells.
  2. Siriwardena BSMS, Karunathilaka HDNU, Kumarasiri PVR, Tilakaratne WM
    Biomed Res Int, 2020;2020:2059240.
    PMID: 33123565 DOI: 10.1155/2020/2059240
    Background: Nodal metastasis is a critical factor in predicting the prognosis of oral squamous cell carcinoma (OSCC). When patients present with a clinically positive neck, the treatment of choice is radical neck dissection. However, management of a clinically negative neck is still a subject of significant controversy.

    Aim: This study was carried out in order to propose a model to predict regional lymph node metastasis of OSCC using histological parameters such as tumour stage, tumour size, pattern of invasion (POI), differentiation of tumour, and host immune response, together with the expression levels of six biomarkers (periostin, HIF-1α, MMP-9, β-catenin, VEGF-C, and EGFR), and, furthermore, to compare the impact of all these parameters on recurrence and 3 yr and 5 yr survival rates. Materials and Method. Histological materials collected from the archives were used to evaluate histological parameters and immunohistochemical profiles. Standard methods were used for immunohistochemistry and for evaluation of results. Data related to recurrence and survival (3 and 5 years) was also recorded. Clinical data was collected from patients' records.

    Results: Male to female ratio was 3 : 1. The commonest site of OSCC was the buccal mucosa, and majority of them were T3 or T4 tumours presented at stage 4. 62.5% of the tumours were well differentiated. Three-year and 5-year survival rates were significantly associated with lymph node metastasis and recurrence. POI was significantly correlated with tumour size, stage, 3-year survival, EGFR, HIF-1α, periostin, and MMP-9 (p < 0.05). Expression of EGFR showed a direct association with metastasis (p < 0.05).

    Conclusion: POI, level of differentiation, and expression of EGFR are independent prognostic markers for lymph node metastasis. Therefore, these parameters may help in treatment planning of a clinically negative neck.

    MeSH terms: Adult; Aged; Aged, 80 and over; Carcinoma, Squamous Cell/metabolism; Carcinoma, Squamous Cell/pathology*; Female; Humans; Immunohistochemistry/methods; Lymphatic Metastasis/pathology; Male; Middle Aged; Mouth Mucosa/metabolism; Mouth Mucosa/pathology; Mouth Neoplasms/metabolism; Mouth Neoplasms/pathology*; Neoplasm Recurrence, Local/metabolism; Neoplasm Recurrence, Local/pathology; Prognosis; Biomarkers/metabolism; Survival Rate; Neck Dissection/methods
  3. Heng WL, Wang QW, Sornarajah R, Tremblay J, Putri NM, Hamid SSA, et al.
    Burns Trauma, 2020;8:tkaa019.
    PMID: 33123605 DOI: 10.1093/burnst/tkaa019
    Currently, there are no harmonized guidelines which govern skin banking in the Asia Pacific region. Therefore, skin banks are either unregulated or rely on their nation's legislation or international accreditation to uphold their quality standards. A new set of skin banking guidelines was developed through a comprehensive review and collation of best international practices for the Asia Pacific Burn Association (APBA) members, from donor screening and testing, to skin recovery, processing, storage and distribution, and quality assurance. National regulatory requirements reviewed include the European directives, Australia's Therapeutic Goods Administration and Singapore's tissue banking standards. Further technical and quality management recommendations are referenced from the American Association of Tissue Banks (AATB), the United States Food and Drug Administration standards and guidance documents, various relevant European guides, Japanese Society of Tissue Transplantation guidelines and the Asia Pacific Association of Surgical Tissue Banking. Adapted mainly from the AATB standards, the new Asia Pacific Burn Association Guidelines for Skin Banking in Therapeutic Applications offer a comprehensive manual, addressing: governance and contracts; staff responsibilities; quality management; facilities, equipment and supplies management; donor consent and testing; and recommendations of good practices pertaining to skin recovery, processing, storage and distribution. Besides complementing current generic regulations, they provide technical specifications of major aspects unaddressed in most legislations. This inaugural set of new regional skin banking guidelines would be a start for regional members of the APBA to adopt, and will hopefully culminate in a set of standards so that, in the long run, skin allografts from this region can be of similar quality, which can simplify import process and facilitate the exchange of allografts between members.
    MeSH terms: Accreditation; Asia; Australia; Burns; Humans; Informed Consent; Japan; Singapore; Societies; Tissue Banks; Tissue Donors; Transplantation, Homologous; United States; United States Food and Drug Administration; Donor Selection; Allografts
  4. Kanchanasurakit S, Santimaleeworagun W, McPherson CE, Piriyachananusorn N, Boonsong B, Katwilat P, et al.
    Infect Chemother, 2020 Dec;52(4):516-529.
    PMID: 33124216 DOI: 10.3947/ic.2020.52.4.516
    BACKGROUND: Infections by Carbapenem-Resistant Enterobacteriaceae (CRE) remain a leading cause of death in critically ill patients. Fosfomycin has been regarded as an alternative therapy for treatment of infections caused by CRE organisms. The purpose of this study is to evaluate clinical outcomes amongst patients with CRE infection who are receiving a fosfomycin dosing regimen using a Monte Carlo simulation and fosfomycin minimum inhibitory concentration (MIC).

    MATERIALS AND METHODS: Fosfomycin MIC was defined by the E-test method. We used Fosfomycin pharmacokinetic parameters from a previously published study. The percent of the time period in which the drug concentration exceeded the MIC, or %T>MIC, used in this study were determined to be 70% of T>MIC and 100% of T>MIC, respectively. All dosing regimens were estimated for the probability of target attainment using a Monte Carlo simulation.

    RESULTS: In this study, we found the MIC's of fosfomycin against CRE isolates ranged from 8 mg/L to 96 mg/L. The total daily dose of fosfomycin ranged from 16 - 24 g and was administered utilizing various fosfomycin dosing regimens to achieve the pharmacokinetic/pharmacodynamic (PK/PD) target in pathogens with a MIC of 32 mg/L for 70%T>MIC and a MIC of 12 mg/L for 100%T>MIC, respectively. For the twelve patients who received the recommended fosfomycin dosing regimen, eleven achieved bacterial eradication for a microbiological cure rate of 91%; and of those patients achieving eradication, two died despite having negative cultures for CRE; the one remaining patient had bacterial persistence. The most commonly observed adverse drug reactions were hypernatremia (3 cases) and hypokalemia (3 cases) and acute kidney injury (3 cases).

    CONCLUSION: Our findings suggest fosfomycin has tended to good efficacy when using dosing regimens that achieve the PK/PD target. Nonetheless, further validation of these regimens in larger populations is needed.

  5. Solanki N, Mehta M, Chellappan DK, Gupta G, Hansbro NG, Tambuwala MM, et al.
    Future Med Chem, 2020 11;12(22):2019-2034.
    PMID: 33124483 DOI: 10.4155/fmc-2020-0083
    Aim: In the present study boswellic acids-loaded chitosan nanoparticles were synthesized using ionic gelation technique. The influence of independent variables were studied and optimized on dependent variables using central composite design. Methodology & results: The designed nanoparticles were observed spherical in shape with an average size of 67.5-187.2 nm and have also shown an excellent entrapment efficiency (80.06 ± 0.48). The cytotoxicity assay revealed enhanced cytotoxicity for drug-loaded nanoparticles in contrast to the free drug having an IC50 value of 17.29 and 29.59 μM, respectively. Flow cytometry confirmed that treatment of cells with 40 μg/ml had arrested 22.75 ± 0.3% at SubG0 phase of the cell cycle when compared with untreated A459 cells. The observed results justified the boswellic acids-loaded chitosan nanoparticles were effective due to greater cellular uptake, sustained intercellular drug retention and enhanced antiproliferative effect by inducing apoptosis.
    MeSH terms: Antineoplastic Agents/chemical synthesis; Antineoplastic Agents/pharmacology*; Antineoplastic Agents/chemistry; Cell Cycle/drug effects; Cell Survival/drug effects; Dose-Response Relationship, Drug; Drug Carriers/pharmacology; Drug Carriers/chemistry; Drug Screening Assays, Antitumor; Humans; Molecular Conformation; Particle Size; Structure-Activity Relationship; Triterpenes/pharmacology*; Triterpenes/chemistry; Tumor Cells, Cultured; Chitosan/chemistry*; Cell Proliferation/drug effects; Nanoparticles/chemistry*; A549 Cells
  6. Mallhi TH, Khan YH, Adnan AS
    Am J Trop Med Hyg, 2020 Dec;103(6):2164-2167.
    PMID: 33124548 DOI: 10.4269/ajtmh.20-0794
    Despite myriad improvements in the care of COVID-19 patients, atypical manifestations are least appreciated during the current pandemic. Because COVID-19 is primarily manifesting as an acute respiratory illness with interstitial and alveolar pneumonia, the possibility of viral invasions into the other organs cannot be disregarded. Acute kidney injury (AKI) has been associated with various viral infections including dengue, chikungunya, Zika, and HIV. The prevalence and risks of AKI during the course of COVID-19 have been described in few studies. However, the existing literature demonstrate great disparity across findings amid variations in methodology and population. This article underscores the propensity of AKI among COVID-19 patients, limitations of the exiting evidence, and importance of timely identification during the case management. The prevalence of AKI is variable across the studies ranging from 4.7% to 81%. Evidence suggest old age, comorbidities, ventilator support, use of vasopressors, black race, severe infection, and elevated levels of baseline serum creatinine and d-dimers are independent risk factors of COVID-19 associated with AKI. COVID-19 patients with AKI also showed unsatisfactory renal recovery and higher mortality rate as compared with patients without AKI. These findings underscore that AKI frequently occurs during the course of COVID-19 infection and requires early stratification and management.
    MeSH terms: Age Factors; Diabetes Mellitus/diagnosis; Diabetes Mellitus/epidemiology*; Diabetes Mellitus/pathology; Diabetes Mellitus/virology; Hospitalization; Humans; Hypertension/diagnosis; Hypertension/epidemiology*; Hypertension/pathology; Hypertension/virology; Kidney/pathology; Kidney/virology; Respiration, Artificial/adverse effects; Respiratory Distress Syndrome, Adult/diagnosis; Respiratory Distress Syndrome, Adult/epidemiology*; Respiratory Distress Syndrome, Adult/pathology; Respiratory Distress Syndrome, Adult/virology; Risk Factors; Vasoconstrictor Agents/adverse effects; Comorbidity; African Continental Ancestry Group; Acute Kidney Injury/diagnosis; Acute Kidney Injury/epidemiology*; Acute Kidney Injury/pathology; Acute Kidney Injury/virology; Pandemics*
  7. Chandran DS, Muthukrishnan SP, Barman SM, Peltonen LM, Ghosh S, Sharma R, et al.
    Adv Physiol Educ, 2020 Dec 01;44(4):709-721.
    PMID: 33125254 DOI: 10.1152/advan.00128.2020
    Active learning promotes the capacity of problem solving and decision making among learners. Teachers who apply instructional processes toward active participation of learners help their students develop higher order thinking skills. Due to the recent paradigm shift toward adopting competency-based curricula in the education of healthcare professionals in India, there is an emergent need for physiology instructors to be trained in active-learning methodologies and to acquire abilities to promote these curriculum changes. To address these issues, a series of International Union of Physiological Sciences (IUPS) workshops on physiology education techniques in four apex centers in India was organized in November 2018 and November 2019. The "hands-on" workshops presented the methodologies of case-based learning, problem-based learning, and flipped classroom; the participants were teachers of basic sciences and human and veterinary medicine. The workshop series facilitated capacity building and creation of a national network of physiology instructors interested in promoting active-learning techniques. The workshops were followed by a brainstorming meeting held to assess the outcomes. The aim of this report is to provide a model for implementing a coordinated series of workshops to support national curriculum change and to identify the organizational elements essential for conducting an effective Physiology Education workshop. The essential elements include a highly motivated core organizing team, constant dialogue between core organizing and local organizing committees, a sufficient time frame for planning and execution of the event, and opportunities to engage students at host institutions in workshop activities.
    MeSH terms: Curriculum; Decision Making; Humans; India; Problem Solving; Students; Thinking; Problem-Based Learning; Capacity Building; Educational Personnel
  8. Hashim ND, Lee SA, Jang SH, Moon IS
    PLoS One, 2020;15(10):e0241152.
    PMID: 33125420 DOI: 10.1371/journal.pone.0241152
    OBJECTIVES: Inlay butterfly cartilage tympanoplasty (IBCT) is a simple grafting technique. Endoscopy facilitates visualization by eliminating blind spots. We analyzed the outcomes of IBCT using both endoscopic and microscopic approaches, and assessed how trainees perceived the educational opportunities afforded.

    MATERIALS AND METHODS: Sixty patients who underwent IBCT were allocated to Group I (n = 30; microscopic IBCT) and Group II (n = 30; endoscopic IBCT) by the dates of their visits. Anatomical success was defined as an intact, repaired tympanic membrane; functional success was defined as a significant decrease in the air-bone gap. Postoperative discomfort was analyzed using a visual analog scale (VAS). Thirteen trainees completed structured questionnaires exploring anatomical identification and the surgical steps.

    RESULTS: The surgical success rates were 96.7% in Group I and 100% in Group II. We found no between-group differences in the mean decrease in the air-bone gap or the extent of postoperative discomfort. Significant postoperative hearing improvements were evident in both groups. The mean operative time was shorter when the microscopic approach was chosen (17.7±4.53 vs. 26.13±9.94 min). The two approaches significantly differed in terms of the identification of external and middle ear anatomical features by the trainees, and their understanding of the surgical steps.

    CONCLUSION: Both endoscopic and microscopic IBCT were associated with good success rates. The endoscopic approach facilitates visualization, and a better understanding of the middle ear anatomy and the required surgical steps and thus is of greater educational utility.

    MeSH terms: Cartilage/transplantation*; Endoscopy/methods*; Female; Humans; Male; Microscopy/methods*; Middle Aged; Retrospective Studies; Tympanoplasty/education*; Tympanoplasty/methods*; Tympanic Membrane Perforation/surgery*
  9. Ansari S, Yamaoka Y
    Int J Mol Sci, 2020 Oct 08;21(19).
    PMID: 33050101 DOI: 10.3390/ijms21197430
    Helicobacter pylori causes persistent infection in the gastric epithelium of more than half of the world's population, leading to the development of severe complications such as peptic ulcer diseases, gastric cancer, and gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Several virulence factors, including cytotoxin-associated gene A (CagA), which is translocated into the gastric epithelium via the type 4 secretory system (T4SS), have been indicated to play a vital role in disease development. Although infection with strains harboring the East Asian type of CagA possessing the EPIYA-A, -B, and -D sequences has been found to potentiate cell proliferation and disease pathogenicity, the exact mechanism of CagA involvement in disease severity still remains to be elucidated. Therefore, we discuss the possible role of CagA in gastric pathogenicity.
    MeSH terms: Type IV Secretion Systems/genetics; Antigens, Bacterial/genetics*; Antigens, Bacterial/metabolism; Antigens, Bacterial/chemistry; Bacterial Proteins/genetics*; Bacterial Proteins/metabolism; Bacterial Proteins/chemistry; Gastric Mucosa/metabolism; Gastric Mucosa/microbiology; Humans; Peptic Ulcer/metabolism; Peptic Ulcer/microbiology*; Phosphorylation; Stomach Neoplasms/metabolism; Stomach Neoplasms/microbiology*; Tyrosine/metabolism; Virulence/genetics; Helicobacter pylori/pathogenicity*; Helicobacter Infections/genetics*; Helicobacter Infections/microbiology; Virulence Factors/genetics*
  10. Tarmizi R, Keng Chee Y, Sipangkui S, Zainuddin ZZ, Fitri WN
    Animals (Basel), 2020 Oct 23;10(11).
    PMID: 33113883 DOI: 10.3390/ani10111948
    This article describes the semen characteristics from different collection methods between captive and confiscated Malayan pangolins, Manis javanica. Semen was collected from 15 pangolins; two captive and 13 confiscated individuals at the mean weight of 9.36 ± 1.94 kg. The three semen collection methods employed were electroejaculation, rectal massage and a combination of both techniques. The semen characteristics (mean ± standard deviation) of the Malayan pangolin are volume (73.75 ± 144.57 µL), pH (7.63 ± 0.53), spermatozoa concentration (997.19 ± 728.98 × 106 /mL), total motility (59.60% ± 30.00%), progressive motility (48.95% ± 30.93%), mass motility (3.50 ± 1.50) and live spermatozoa (80.25% ± 13.45%). There was no significant difference in semen characteristics between the three collection methods. The percentages of live spermatozoa were significantly different, suggesting better samples from captive compared to confiscated animals. However, there was no significant difference in spermatozoa kinetics between the captive and confiscated samples, suggesting the potential of utilizing confiscated individuals for gamete recovery to conserve the genetic pool of pangolins. All three methods of semen collection were successfully performed in pangolins and should be considered; however, electroejaculation remains the most consistent method of obtaining semen from the species.
    MeSH terms: Animals; Germ Cells; Humans; Hydrogen-Ion Concentration; Kinetics; Male; Massage; Semen; Sperm Count; Spermatozoa; Testis
  11. Atiq A, Parhar I
    Molecules, 2020 Oct 23;25(21).
    PMID: 33113890 DOI: 10.3390/molecules25214895
    Clinically, gliomas are classified into four grades, with grade IV glioblastoma multiforme being the most malignant and deadly, which accounts for 50% of all gliomas. Characteristically, glioblastoma involves the aggressive proliferation of cells and invasion of normal brain tissue, outcomes as poor patient prognosis. With the current standard therapy of glioblastoma; surgical resection and radiotherapy followed by adjuvant chemotherapy with temozolomide, it remains fatal, because of the development of drug resistance, tumor recurrence, and metastasis. Therefore, the need for the effective therapeutic option for glioblastoma remains elusive. Previous studies have demonstrated the chemopreventive role of naturally occurring pharmacological agents through preventing or reversing the initiation phase of carcinogenesis or arresting the cancer progression phase. In this review, we discuss the role of natural phytochemicals in the amelioration of glioblastoma, with the aim to improve therapeutic outcomes, and minimize the adverse side effects to improve patient's prognosis and enhancing their quality of life.
    MeSH terms: Animals; Antineoplastic Agents/pharmacology*; Flavonoids/pharmacology*; Flavonoids/therapeutic use; Glioblastoma/drug therapy*; Humans; Polysaccharides/pharmacology*; Polysaccharides/therapeutic use; Molecular Targeted Therapy; Phytochemicals/pharmacology*; Phytochemicals/therapeutic use
  12. Rengganaten V, Huang CJ, Tsai PH, Wang ML, Yang YP, Lan YT, et al.
    Int J Mol Sci, 2020 Oct 23;21(21).
    PMID: 33114016 DOI: 10.3390/ijms21217864
    Spheroidal cancer cell cultures have been used to enrich cancer stem cells (CSC), which are thought to contribute to important clinical features of tumors. This study aimed to map the regulatory networks driven by circular RNAs (circRNAs) in CSC-enriched colorectal cancer (CRC) spheroid cells. The spheroid cells established from two CRC cell lines acquired stemness properties in pluripotency gene expression and multi-lineage differentiation capacity. Genome-wide sequencing identified 1503 and 636 circRNAs specific to the CRC parental and spheroid cells, respectively. In the CRC spheroids, algorithmic analyses unveiled a core network of mRNAs involved in modulating stemness-associated signaling pathways, driven by a circRNA-microRNA (miRNA)-mRNA axis. The two major circRNAs, hsa_circ_0066631 and hsa_circ_0082096, in this network were significantly up-regulated in expression levels in the spheroid cells. The two circRNAs were predicted to target and were experimentally shown to down-regulate miR-140-3p, miR-224, miR-382, miR-548c-3p and miR-579, confirming circRNA sponging of the targeted miRNAs. Furthermore, the affected miRNAs were demonstrated to inhibit degradation of six mRNA targets, viz. ACVR1C/ALK7, FZD3, IL6ST/GP130, SKIL/SNON, SMAD2 and WNT5, in the CRC spheroid cells. These mRNAs encode proteins that are reported to variously regulate the GP130/Stat, Activin/Nodal, TGF-β/SMAD or Wnt/β-catenin signaling pathways in controlling various aspects of CSC stemness. Using the CRC spheroid cell model, the novel circRNA-miRNA-mRNA axis mapped in this work forms the foundation for the elucidation of the molecular mechanisms of the complex cellular and biochemical processes that determine CSC stemness properties of cancer cells, and possibly for designing therapeutic strategies for CRC treatment by targeting CSC.
    MeSH terms: Humans; RNA, Messenger/genetics*; Neoplastic Stem Cells/pathology; Neoplastic Stem Cells/chemistry; Colorectal Neoplasms/genetics*; Colorectal Neoplasms/pathology; Sequence Analysis, RNA; Spheroids, Cellular/cytology; Spheroids, Cellular/pathology*; Spheroids, Cellular/chemistry; Cell Culture Techniques; Computational Biology/methods; MicroRNAs/genetics*; Cell Line, Tumor/chemistry; Gene Regulatory Networks
  13. Ahmad Sobri S, Whitehead D, Mohamed M, Mohamed JJ, Mohamad Amini MH, Hermawan A, et al.
    Polymers (Basel), 2020 Oct 23;12(11).
    PMID: 33114223 DOI: 10.3390/polym12112461
    Carbon fibre-reinforced polymer (CFRP) composite materials play an increasingly important role in modern manufacturing, and they are among the more prominent materials used in aircraft manufacturing today. However, CFRP is highly prone to delamination and other damage when drilled due to it being extremely strong with a good strength-to-weight ratio and high thermal conductivity. Because of this problem and CFRP's growing importance in aircraft manufacture, research has focused on the entry and exit holes as indicators of damage occurrence during drilling of screws, rivets, and other types of holes. The inside of the hole was neglected in past research and a proper way to quantify the internal side of a hole by combining the entry and exit hole should be included. To fill this gap and improve the use of CFRP, this paper reports a novel technique to measure the holes by using the extension of the adjusted delamination factor (SFDSR) for drilling thick CFRP composites in order to establish the influence of machining input variables on key output measures, i.e., delamination and other damages. The experimental results showed a significant difference in interpretation of the damage during the analysis. Improvement was made by providing better perspectives of identifying hole defects.
    MeSH terms: Aircraft; Biological Phenomena; Bone Screws; Dietary Fiber; Plastics; Polymers; Thermal Conductivity; Laxatives
  14. Ahmed JB, Salisu A, Pradhan B, Alamri AM
    Insects, 2020 Oct 24;11(11).
    PMID: 33114307 DOI: 10.3390/insects11110728
    Termite nests have long been suggested to be good indicators of groundwater but only a few studies are available to demonstrate the relationship between the two. This study therefore aims at investigating the most favourable spots for locating groundwater structures on a small parcel of land with conspicuous termite activity. To achieve this, geophysical soundings using the renowned vertical electrical sounding (VES) technique was carried out on the gridded study area. A total of nine VESs with one at the foot of a termitarium were conducted. The VES results were interpreted and assessed via two different techniques: (1) physical evaluation as performed by drillers in the field and (2) integration of primary and secondary geoelectrical parameters in a geographic information system (GIS). The result of the physical evaluation indicated a clear case of subjectivity in the interpretation but was consistent with the choice of VES points 1 and 6 (termitarium location) as being the most prospective points to be considered for drilling. Similarly, the integration of the geoelectrical parameters led to the mapping of the most prospective groundwater portion of the study area with the termitarium chiefly in the center of the most suitable region. This shows that termitaria are valuable landscape features that can be employed as biomarkers in the search of groundwater.
    MeSH terms: Animals; Employment; Physical Examination; Prospective Studies; Biomarkers; Isoptera; Geographic Information Systems; Groundwater
  15. Keirudin AA, Zainuddin N, Yusof NA
    Polymers (Basel), 2020 Oct 24;12(11).
    PMID: 33114335 DOI: 10.3390/polym12112465
    In the present study, CMSS (carboxymethyl sago starch)-based hydrogel was synthesized by crosslinking with citric acid via esterification and then applied as a metal sorbent to overcome excessive heavy metal pollution. The CMSS/CA (carboxymethyl sago starch/citric acid) hydrogel was characterized by Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The absorption band at 1726 cm-1 was observed in the FT-IR spectrum of CMSS/CA hydrogel and indicated ester bonds formed. Further findings show that the cross-linkages in the CMSS/CA hydrogel increased the thermal stability of CMSS and various sizes of pores were also shown in the SEM micrograph. Conversely, the removal of heavy metals was analyzed using Inductively Coupled Plasma-Optic Emission Spectra (ICP-OES). The effects of the pH of the metal solution, contact time, initial concentration of the metal ions and temperature on the sorption capacity were investigated. Under optimum condition, the sorption capacity of Pb2+, Cu2+, Ni2+ and Zn2+ onto CMSS/CA hydrogel were 64.48, 36.56, 16.21, 18.45 mg/g, respectively. The experiments demonstrated that CMSS/CA hydrogel has high selectivity towards Pb2+ in both non-competitive and competitive conditions. In conclusion, the CMSS/CA hydrogel as a natural based heavy metal sorption material exhibited a promising performance, especially in the sorption of Pb2+ for wastewater treatment.
    MeSH terms: Esterification; Fourier Analysis; Hydrogen-Ion Concentration; Ions; Microscopy, Electron, Scanning; Starch; Temperature; X-Ray Diffraction; Zinc; Spectroscopy, Fourier Transform Infrared; Metals, Heavy; Citric Acid; Hydrogels; Waste Water
  16. Oslan SNH, Tan JS, Abbasiliasi S, Ziad Sulaiman A, Saad MZ, Halim M, et al.
    Microorganisms, 2020 Oct 24;8(11).
    PMID: 33114463 DOI: 10.3390/microorganisms8111654
    Growth of mutant gdhA Pasteurella multocida B:2 was inhibited by the accumulation of a by-product, namely ammonium in the culture medium during fermentation. The removal of this by-product during the cultivation of mutant gdhA P. multocida B:2 in a 2 L stirred-tank bioreactor integrated with an internal column using cation-exchange adsorption resin for the improvement of cell viability was studied. Different types of bioreactor system (dispersed and internal) with resins were successfully used for ammonium removal at different agitation speeds. The cultivation in a bioreactor integrated with an internal column demonstrated a significant improvement in growth performance of mutant gdhA P. multocida B:2 (1.05 × 1011 cfu/mL), which was 1.6-fold and 8.4-fold as compared to cultivation with dispersed resin (7.2 × 1010 cfu/mL) and cultivation without resin (1.25 × 1010 cfu/mL), respectively. The accumulation of ammonium in culture medium without resin (801 mg/L) was 1.24-fold and 1.37-fold higher than culture with dispersed resin (642.50 mg/L) and culture in the bioreactor integrated with internal adsorption (586.50 mg/L), respectively. Results from this study demonstrated that cultivation in a bioreactor integrated with the internal adsorption column in order to remove ammonium could reduce the inhibitory effect of this by-product and improve the growth performance of mutant gdhA P. multocida B:2.
    MeSH terms: Adsorption; Biological Phenomena; Cation Exchange Resins; Cations; Cell Survival; Culture Media; Fermentation; Pasteurella multocida; Motor Vehicles; Bioreactors; Ammonium Compounds
  17. Aabideen ZU, Mumtaz MW, Akhtar MT, Mukhtar H, Raza SA, Touqeer T, et al.
    Molecules, 2020 Oct 26;25(21).
    PMID: 33114490 DOI: 10.3390/molecules25214935
    The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. The 2,2-diphenyl-1-picrylhydrazyl method was adopted to evaluate antioxidant potential. Porcine pancreatic lipase inhibitory assay was conducted to assess the in vitro antiobesity property. Ultra-high performance chromatography equipped with a mass spectrometer was utilized to profile the secondary metabolites in the most potent extract. The 60% ethanolic extract exhibited highest extract yield (25.05 ± 0.07%), total phenolic contents (123.42 ± 0.007 mg GAE/g DE), total flavonoid contents (55.81 ± 0.004 RE/g DE), DPPH-radical-scavenging activity (IC50 = 81.05 ± 0.96 µg/mL) and pancreatic lipase inhibitory properties (IC50 = 146.49 ± 4.24 µg/mL). The targeted metabolite fingerprinting highlighted the presence of high-value secondary metabolites. Molecular-binding energies computed by docking tool revealed the possible contribution towards pancreatic lipase inhibitory properties of secondary metabolites including myricetin, isomangiferin, icariside B4, kaempferol and luteolin derivatives when compared to the standard drug orlistat. In vivo investigations revealed a positive impact on the lipid profile and obesity biomarkers of obese mice. The study presents Taraxacum officinale as a potent source of functional bioactive ingredients to impart new insights into the existing pool of knowledge of naturopathic approaches towards obesity management.
    MeSH terms: Ethanol/chemistry; Animals; Body Weight/drug effects; Chromatography, High Pressure Liquid; Lipase/antagonists & inhibitors; Lipase/metabolism; Lipase/chemistry; Obesity/drug therapy*; Obesity/metabolism; Pancreas/enzymology; Plant Extracts/metabolism; Plant Extracts/pharmacology*; Plant Extracts/therapeutic use; Protein Conformation; Anti-Obesity Agents/metabolism; Anti-Obesity Agents/pharmacology*; Anti-Obesity Agents/therapeutic use; Taraxacum/chemistry*; Mice; Tandem Mass Spectrometry; Metabolomics*; Molecular Docking Simulation*
  18. Faisalina AF, Sonvico F, Colombo P, Amirul AA, Wahab HA, Majid MIA
    Nanomaterials (Basel), 2020 Oct 26;10(11).
    PMID: 33114572 DOI: 10.3390/nano10112123
    Polyhydroxyalkanoate (PHA) copolymers show a relatively higher in vivo degradation rate compared to other PHAs, thus, they receive a great deal of attention for a wide range of medical applications. Nanoparticles (NPs) loaded with poorly water-soluble anticancer drug docetaxel (DCX) were produced using poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-co-4HB), copolymers biosynthesised from Cupriavidus malaysiensis USMAA1020 isolated from the Malaysian environment. Three copolymers with different molar proportions of 4-hydroxybutirate (4HB) were used: 16% (PHB16), 30% (PHB30) and 70% (PHB70) 4HB-containing P(3HB-co-4HB). Blank and DCX-loaded nanoparticles were then characterized for their size and size distribution, surface charge, encapsulation efficiency and drug release. Preformulation studies showed that an optimised formulation could be achieved through the emulsification/solvent evaporation method using PHB70 with the addition of 1.0% PVA, as stabilizer and 0.03% VitE-TPGS, as surfactant. DCX-loaded PHB70 nanoparticles (DCX-PHB70) gave the desired particle size distribution in terms of average particle size around 150 nm and narrow particle size distribution (polydispersity index (PDI) below 0.100). The encapsulation efficiency result showed that at 30% w/w drug-to-polymer ratio: DCX- PHB16 NPs were able to encapsulate up to 42% of DCX; DCX-PHB30 NPs encapsulated up to 46% of DCX and DCX-PHB70 NPs encapsulated up to 50% of DCX within the nanoparticle system. Approximately 60% of DCX was released from the DCX-PHB70 NPs within 7 days for 5%, 10% and 20% of drug-to-polymer ratio while for the 30% and 40% drug-to-polymer ratios, an almost complete drug release (98%) after 7 days of incubation was observed.
    MeSH terms: Hydroxybutyrates; Particle Size; Polyesters; Solvents; Surface-Active Agents; Vitamin E; Water; 3-Hydroxybutyric Acid; Cupriavidus; Nanoparticles; Polyhydroxyalkanoates; Drug Liberation
  19. Nair AB, Gandhi D, Patel SS, Morsy MA, Gorain B, Attimarad M, et al.
    Molecules, 2020 Oct 26;25(21).
    PMID: 33114598 DOI: 10.3390/molecules25214947
    Sinigrin, a precursor of allyl isothiocyanate, present in the Raphanus sativus exhibits diverse biological activities, and has an immense role against cancer proliferation. Therefore, the objective of this study was to quantify the sinigrin in the R. sativus roots using developed and validated RP-HPLC method and further evaluated its' anticancer activity. To achieve the objective, the roots of R. sativus were lyophilized to obtain a stable powder, which were extracted and passed through an ion-exchange column to obtain sinigrin-rich fraction. The RP-HPLC method using C18 analytical column was used for chromatographic separation and quantification of sinigrin in the prepared fraction, which was attained using the mobile phase consisting of 20 mM tetrabutylammonium: acetonitrile (80:20%, v/v at pH 7.0) at a flow rate of 0.5 mL/min. The chromatographic peak for sinigrin was showed at 3.592 min for pure sinigrin, where a good linearity was achieved within the concentration range of 50 to 800 µg/mL (R2 > 0.99), with an excellent accuracy (-1.37% and -1.29%) and precision (1.43% and 0.94%), for intra and inter-day, respectively. Finally, the MTT assay was performed for the sinigrin-rich fraction using three different human cancer cell lines, viz. prostate cancer (DU-145), colon adenocarcinoma (HCT-15), and melanoma (A-375). The cell-based assays were extended to conduct apoptotic and caspase-3 activities, to determine the mechanism of action of sinigrin in the treatment of cancer. MTT assay showed IC50 values of 15.88, 21.42, and 24.58 µg/mL for DU-145, HCT-15, and A-375 cell lines, respectively. Increased cellular apoptosis and caspase-3 expression were observed with sinigrin-rich fraction, indicating significant increase in overexpression of caspase-3 in DU-145 cells. In conclusion, a simple, sensitive, fast, and accurate RP-HPLC method was developed for the estimation of sinigrin in the prepared fraction. The data observed here indicate that sinigrin can be beneficial in treating prostate cancer possibly by inducing apoptosis.
    MeSH terms: Antineoplastic Agents/analysis*; Antineoplastic Agents/pharmacology*; Chromatography, High Pressure Liquid/methods*; Glucosinolates/analysis*; Glucosinolates/pharmacology*; Humans; Linear Models; Plant Roots/chemistry*; Raphanus/chemistry*; Cell Line, Tumor; Chromatography, Reverse-Phase
  20. Che Man R, Sulaiman N, Ishak MF, Bt Hj Idrus R, Abdul Rahman MR, Yazid MD
    PMID: 33114632 DOI: 10.3390/ijerph17217825
    Anti-atherogenic therapy is crucial in halting the progression of inflammation-induced intimal hyperplasia. The aim of this concise review was to methodically assess the recent findings of the different approaches, mainly on the recruitment of chemokines and/or cytokine and its effects in combating the intimal hyperplasia caused by various risk factors. Pubmed and Scopus databases were searched, followed by article selection based on pre-set inclusion and exclusion criteria. The combination of keywords used were monocyte chemoattractant protein-1 OR MCP-1 OR TNF-alpha OR TNF-α AND hyperplasia OR intimal hyperplasia OR neointimal hyperplasia AND in vitro. These keywords combination was incorporated in the study and had successfully identified 77 articles, with 22 articles were acquired from Pubmed, whereas 55 articles were obtained from Scopus. However, after title screening, only twelve articles meet the requirements of defined inclusion criteria. We classified the data into 4 different approaches, i.e., utilisation of natural product, genetic manipulation and protein inhibition, targeted drugs in clinical setting, and chemokine and cytokines induction. Most of the articles are working on genetic manipulation targeted on specific pathway to inhibit the pro-inflammatory factors expression. We also found that the utilisation of chemokine- and cytokine-related treatments are emerging throughout the years. However, there is no study utilising the combination of approaches that might give a better outcome in combating intimal hyperplasia. Hopefully, this concise review will provide an insight regarding the usage of different novel approaches in halting the progression of intimal hyperplasia, which serves as a key factor for the development of atherosclerosis in cardiovascular disease.
    MeSH terms: Anti-Inflammatory Agents*; Humans; Hyperplasia/drug therapy; Hyperplasia/prevention & control; Tumor Necrosis Factor-alpha
External Links