MATERIALS AND METHODS: The antisolvent precipitation method was used for formulation of nanoparticles. Factorial design (32) was utilized as a tool to analyze the effect of Ch and TGP concentration on particle size and entrapment efficiency of nanoparticles.
RESULTS: Formulated nanoparticles showed high entrapment efficiency (67.19±0.42-83.36±0.23%) and small size (53.3-383.1 nm). The present investigation involved utilization of two biological membranes (egg and tomato) as biological barriers for drug release. The study revealed that drug release from tomato membranes was retarded (as compared to egg membranes) but the release pattern matched that of egg membranes. All formulations followed the Baker-Lansdale model of drug release irrespective of the two different biological barriers. Stability studies were carried out for 45 days and exhibited less variation in particle size as well as a reduction in entrapment efficiency. Simvastatin loaded PEC stabilized nanoparticles exhibited better control on growth of human breast cancer cell lines than simple simvastatin. An unusual anticancer effect of simvastatin nanoparticles is also supported by several other research studies.
CONCLUSION: The present study involves first-time synthesis of Ch-TGP polyelectrolyte complex stabilized nanoparticles of simvastatin against MCF-7 cells. It recommends that, in future, theoretical modeling and IVIVC should be carried out for perfect designing of delivery systems.
METHODS: Maximal non-toxic dose (MNTD) of methanol extract of P. ginseng root culture on BV2 microglia cells was first determined via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, followed by treatment and LPS stimulation of cells, and the measurement of NO using Griess assay and TNF-α, IL-6, and IL-10 using ELISA assay.
RESULTS: The MNTD of P. ginseng root extract was determined to be (587 ± 57) µg/mL. Following that, NO and IL-6 levels were found to be insignificantly reduced by 6.88% and 0.14% respectively in stimulated cells upon treatment with MNTD. Treatment with MNTD yielded similar insignificant result, with only a reduction of 3.58% and 0.08% in NO and IL-6 levels respectively. However, TNF-α and IL-10 levels were significantly downregulated by 15.64% and 34.96% respectively upon treatment with P. ginseng root extract at MNTD.
CONCLUSION: Methanol extract of P. ginseng root culture did not show any significant anti-inflammatory effects on NO and IL-6 levels, but might potentially possess both anti-neuroinflammatory and pro-neuroinflammatory properties through the downregulation of TNF-α and IL-10 respectively.
METHODS: This study used data from 6524 participants of the 1970 British Birth Cohort Study, an ongoing population-based birth cohort of individuals born in England, Scotland and Wales. Participants' socioeconomic position was indicated by occupational social class at age 26 and 46 years (the first and latest adult waves, respectively). Self-rated oral health was measured at age 46 years. The association between social mobility and adult oral health was assessed using conventional regression models and diagonal reference models, adjusting for gender, ethnicity, country of residence and residence area.
RESULTS: Over a fifth of participants (22.2%) reported poor self-rated oral health at age 46 years. In conventional regression analysis, the odds ratios for social mobility varied depending on whether they were adjusted for social class of origin or destination. In addition, all social trajectories had greater odds of reporting poor oral health than non-mobile adults in class I/II. In diagonal reference models, both upward (Odds Ratio 0.79; 95% CI 0.63-0.99) and downward mobility (0.90; 95% CI 0.71-1.13) were inversely associated with poor self-rated oral health. The origin weight was 0.48 (95% CI 0.33-0.63), suggesting that social class of origin was as important as social class of destination.
CONCLUSION: This longitudinal analysis showed that intragenerational social mobility from young to middle adulthood was associated with self-rated oral health, independent of previous and current social class.
METHODS: The total lifetime cost per TDT patient (TC1) is the sum of lifetime healthcare cost (TC2) and lifetime patient and family healthcare expenditure (TC3). TC2 was simulated using the Markov model, taking into account all costs subsidized by the government, and TC3 was estimated through a cross-sectional health survey approach. A survey was performed using a two-stage sampling method in 13 thalassaemia centres covering all regions in Malaysia.
RESULTS: A TDT patient is expected to incur TC2 of USD 561,208. ICT was the main driver of cost and accounted for 56.9% of the total cost followed by blood transfusion cost at 13.1%. TC3 was estimated to be USD 45,458. Therefore, the estimated TC1 of a TDT patient was USD 606,665. Sensitivity analyses showed that if all patients were prescribed oral ICT deferasirox for their lifetime, the total healthcare cost would increase by approximately 65%. Frequency of visits to health facilities for blood transfusion/routine monitoring and patients who were prescribed desferrioxamine were observed to be factors affecting patient and family monthly expenses.
CONCLUSION: The lifetime cost per TDT patient was USD 606,665, and this result may be useful for national health allocation planning. An estimation of the economic burden will provide additional information to decision makers on implementing prevention interventions to reduce the number of new births and medical service reimbursement.
STUDY DESIGN: Prospective, randomized, blinded clinical trial.
ANIMALS: A total of 40 adult wild common palm civets, 24 female and 16 male, weighing 1.5-3.4 kg.
METHODS: The civets were randomly assigned for anesthesia with butorphanol, azaperone and medetomidine (0.6, 0.6 and 0.2 mg kg-1, respectively; group BAM) or with butorphanol, midazolam and medetomidine (0.3, 0.4 and 0.1 mg kg-1, respectively; group BMM) intramuscularly (IM) in a squeeze cage. When adequately relaxed, the trachea was intubated for oxygen administration. Physiological variables were recorded every 5 minutes after intubation. Following morphometric measurements, sampling, microchipping and parasite treatment, medetomidine was reversed with atipamezole at 1.0 or 0.5 mg kg-1 IM to groups BAM and BMM, respectively. Physiological variables and times to reach the different stages of anesthesia were compared between groups.
RESULTS: Onset time of sedation and recumbency was similar in both groups; time to achieve complete relaxation and tracheal intubation was longer in group BAM. Supplementation with isoflurane was required to enable intubation in five civets in group BAM and one civet in group BMM. All civets in group BAM required topical lidocaine to facilitate intubation. End-tidal carbon dioxide partial pressure was lower in group BAM, but heart rate, respiratory rate, rectal temperature, peripheral hemoglobin oxygen saturation and mean arterial blood pressure were not different. All civets in both groups recovered well following administration of atipamezole.
CONCLUSIONS AND CLINICAL RELEVANCE: Both BAM and BMM combinations were effective for immobilizing wild common palm civets. The BMM combination had the advantage of producing complete relaxation that allowed intubation more rapidly.