Browse publications by year: 2021

  1. AlSahow A, Muenz D, Al-Ghonaim MA, Al Salmi I, Hassan M, Al Aradi AH, et al.
    Clin Kidney J, 2021 Mar;14(3):820-830.
    PMID: 33777365 DOI: 10.1093/ckj/sfz195
    BACKGROUND: Dialysis adequacy, as measured by single pool Kt/V, is an important parameter for assessing hemodialysis (HD) patients' health. Guidelines have recommended Kt/V of 1.2 as the minimum dose for thrice-weekly HD. We describe Kt/V achievement, its predictors and its relationship with mortality in the Gulf Cooperation Council (GCC) (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates).

    METHODS: We analyzed data (2012-18) from the prospective cohort Dialysis Outcomes and Practice Patterns Study for 1544 GCC patients ≥18 years old and on dialysis >180 days.

    RESULTS: Thirty-four percent of GCC HD patients had low Kt/V (<1.2) versus 5%-17% in Canada, Europe, Japan and the USA. Across the GCC countries, low Kt/V prevalence ranged from 10% to 54%. In multivariable logistic regression, low Kt/V was more common (P 

  2. Alhabib KF, Al-Rasadi K, Almigbal TH, Batais MA, Al-Zakwani I, Al-Allaf FA, et al.
    PLoS One, 2021;16(6):e0251560.
    PMID: 34086694 DOI: 10.1371/journal.pone.0251560
    BACKGROUND AND AIMS: Familial hypercholesterolemia (FH) is a common autosomal dominant disorder that can result in premature atherosclerotic cardiovascular disease (ASCVD). Limited data are available worldwide about the prevalence and management of FH. Here, we aimed to estimate the prevalence and management of patients with FH in five Arabian Gulf countries (Saudi Arabia, Oman, United Arab Emirates, Kuwait, and Bahrain).

    METHODS: The multicentre, multinational Gulf FH registry included adults (≥18 years old) recruited from outpatient clinics in 14 tertiary-care centres across five Arabian Gulf countries over the last five years. The Gulf FH registry had four phases: 1- screening, 2- classification based on the Dutch Lipid Clinic Network, 3- genetic testing, and 4- follow-up.

    RESULTS: Among 34,366 screened patient records, 3713 patients had suspected FH (mean age: 49±15 years; 52% women) and 306 patients had definite or probable FH. Thus, the estimated FH prevalence was 0.9% (1:112). Treatments included high-intensity statin therapy (34%), ezetimibe (10%), and proprotein convertase subtilisin/kexin type 9 inhibitors (0.4%). Targets for low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol were achieved by 12% and 30%, respectively, of patients at high ASCVD risk, and by 3% and 6%, respectively, of patients at very high ASCVD risk (p <0.001; for both comparisons).

    CONCLUSIONS: This snap-shot study was the first to show the high estimated prevalence of FH in the Arabian Gulf region (about 3-fold the estimated prevalence worldwide), and is a "call-to-action" for further confirmation in future population studies. The small proportions of patients that achieved target LDL-C values implied that health care policies need to implement nation-wide screening, raise FH awareness, and improve management strategies for FH.

    MeSH terms: Ezetimibe/therapeutic use; Bahrain/epidemiology; Female; Humans; Hyperlipoproteinemia Type II/drug therapy; Hyperlipoproteinemia Type II/metabolism; Hyperlipoproteinemia Type II/epidemiology*; Kuwait/epidemiology; Cholesterol, LDL/metabolism; Male; Middle Aged; Oman/epidemiology; Registries; Risk Factors; Saudi Arabia/epidemiology; Serine Endopeptidases/metabolism; United Arab Emirates/epidemiology; Prevalence
  3. Alasfour S, Alfailakawi HS, Shamsaldeen YA
    SAGE Open Med Case Rep, 2021;9:2050313X211019789.
    PMID: 34104447 DOI: 10.1177/2050313X211019789
    Bartter syndrome is a rare autosomal recessive disorder characterized by hypokalaemia. Hypokalaemia is defined as low serum potassium concentration ˂3.5 mmol/L, which may lead to arrhythmia and death if left untreated. The aim of this case report was to normalize serum potassium concentration without the need for intravenous intervention. A 5-month-old male of 2.7 kg body weight diagnosed with Bartter syndrome was admitted to the general paediatric ward with acute severe hypokalaemia and urinary tract infection. The main challenge was the inability to administer drugs through intravenous route due to compromised body size. Therefore, we shifted the route of administration to the nasogastric tube/oral route. A total of 2 mL of concentrated intravenous potassium chloride (4 mEq potassium) were dissolved in distilled water and administered through nasogastric tube. Serum potassium concentration was rapidly normalized, which culminated in patient discharge. In conclusion, shifting drug administration from intravenous to oral route in a paediatric patient with Bartter syndrome includes numerous advantages such as patient convenience, minimized risk of cannula-induced infection, and reduced nurse workload.
  4. Apuke OD, Omar B
    Telemat Inform, 2021 Jan;56:101475.
    PMID: 34887612 DOI: 10.1016/j.tele.2020.101475
    Fake news dissemination on COVID-19 has increased in recent months, and the factors that lead to the sharing of this misinformation is less well studied. Therefore, this paper describes the result of a Nigerian sample (n = 385) regarding the proliferation of fake news on COVID-19. The fake news phenomenon was studied using the Uses and Gratification framework, which was extended by an "altruism" motivation. The data were analysed with Partial Least Squares (PLS) to determine the effects of six variables on the outcome of fake news sharing. Our results showed that altruism was the most significant factor that predicted fake news sharing of COVID-19. We also found that social media users' motivations for information sharing, socialisation, information seeking and pass time predicted the sharing of false information about COVID-19. In contrast, no significant association was found for entertainment motivation. We concluded with some theoretical and practical implications.
  5. Nasir AM, Awang N, Hubadillah SK, Jaafar J, Othman MHD, Wan Salleh WN, et al.
    J Water Process Eng, 2021 Aug;42:102111.
    PMID: 35592059 DOI: 10.1016/j.jwpe.2021.102111
    Photocatalytic technology offers powerful virus disinfection in wastewater via oxidative capability with minimum harmful by-products generation. This review paper aims to provide state-of-the-art photocatalytic technology in battling transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. Prior to that, the advantages and limitations of the existing conventional and advanced oxidation processes for virus disinfection in water systems were thoroughly examined. A wide spectrum of virus degradation by various photocatalysts was then considered to understand the potential mechanism for deactivating this deadly virus. The challenges and future perspectives were comprehensively discussed at the end of this review describing the limitations of current photocatalytic technology and suggesting a realistic outlook on advanced photocatalytic technology as a potential solution in dealing with similar upcoming pandemics. The major finding of this review including discovery of a vision on the possible photocatalytic approaches that have been proven to be outstanding against other viruses and subsequently combatting SARS-CoV-2 in wastewater. This review intends to deliver insightful information and discussion on the potential of photocatalysis in battling COVID-19 transmission through wastewater.
  6. Maliki ABHM, Abdullah MR, Nadzmi A, Zainoddin MAR, Puspitasari IM, Jibril NFA, et al.
    Data Brief, 2021 Feb;34:106582.
    PMID: 33354597 DOI: 10.1016/j.dib.2020.106582
    These datasets described the data of the Motor Performance Index for 7 years old kids in Malaysia based on Malaysia's physical fitness test SEGAK. This database has been designed and created with data analysis to create the index from the factor and variable of the test and the test was conducted in the majority of the national primary school in Malaysia. Gender, state of origin, and residential location of the school were the factors used to categorize the participant of the test. The factor of age, weight, height, body mass index (BMI), power, flexibility, coordination, and speed were used for the measurement to relate with the participant's physical fitness. Kids Motor Performances Index data can be reused for talent identification in sport talent scout and to create a baseline for kid's biology growth specifically in gross motor skills and cognitive growth measurement.
  7. Ezzuldin M Saber S, Md Jamil SNA, Abdullah LC, Choong TSY, Ming Ting T
    RSC Adv, 2021 Feb 17;11(14):8150-8162.
    PMID: 35423311 DOI: 10.1039/d0ra10910j
    This study performs an appraisal of the adsorptive capacity of amidoxime-modified poly(acrylonitrile-co-acrylic acid) or abbreviated as (AO-modified poly(AN-co-AA)) for the p-nitrophenol (PNP) adsorption, from aquatic environments via batch system. The AO-modified poly(AN-co-AA) polymer was developed with redox polymerization, and then altered by using hydroxylamine hydrochloride (HH). Tools used to describe the physicochemical and morphological characteristics of the AO-modified poly(AN-co-AA) were Fourier transform infrared (FTIR) spectroscopy, CHN elemental analysis, X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The adsorption kinetics were examined by pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion kinetic models. Meanwhile, the isotherms were investigated by Langmuir, Freundlich, Temkin and Redlich-Peterson models. It was found that the adsorption was best fitted with pseudo-second order, and agreed with both Langmuir and Freundlich isotherm models. It was described best with the Freundlich isotherm due to highest R 2 (0.999). The maximum adsorption capacity was 143.06 mg g-1 at 298 K, and thermodynamic functions showed that the adsorption process was exothermic. Also, following five regeneration cycles, the adsorbent recorded 71.7% regeneration efficiency. The finding in this study indicates that the AO-modified poly(AN-co-AA) is an effective adsorbent to remove PNP from an aqueous solution.
  8. Alroomi M, Rajan R, Omar AA, Alsaber A, Pan J, Fatemi M, et al.
    Immun Inflamm Dis, 2021 Dec;9(4):1648-1655.
    PMID: 34438471 DOI: 10.1002/iid3.517
    INTRODUCTION: This study aims to investigate in-hоsрitаl mоrtаlity in severe асute resрirаtоry syndrоme соrоnаvirus 2 раtients strаtified by serum ferritin levels.

    METHODS: Patients were stratified based on ferritin levels (ferritin levels ≤ 1000 or >1000).

    RESULTS: Approximately 89% (118) of the patients with ferritin levels > 1000 had pneumonia, and 51% (67) had hypertension. Fever (97, 73.5%) and shortness of breath (80, 61%) were two major symptoms among the patients in this group. Logistic regression analysis indicated that ferritin level (odds ratio [OR] = 0.36, 95% confidence interval [CI] = 0.21-0.62; p  1000.

    CONCLUSION: In this study, higher levels of serum ferritin were found to be an independent predictor of in-hоsрitаl mоrtаlity.

    MeSH terms: Ferritins; Humans; Male; Pneumonia*
  9. Lim JY, Amit N, Ali NM, Leong HY, Mohamad M, Rajikan R
    Intractable Rare Dis Res, 2021 Nov;10(4):246-256.
    PMID: 34877236 DOI: 10.5582/irdr.2021.01124
    Disorders of amino acid and nitrogen metabolism (AANMDs) occur due to an enzyme deficiency in a normal biochemical pathway. Nutritional intervention is recognized as the mainstay of treatment for children diagnosed with AANMD. Hence, this scoping review aimed to identify the nutritional interventions available in managing AANMD disorders and their effects on nutritional status. A systematic search using PRISMA Extension for Scoping Reviews (PRISMA-ScR) method was conducted across 4 databases: PubMed, ScienceDirect (Elsevier), EBSCOhost and Cochrane Central Register of Controlled Trials (CENTRAL). Inclusion criteria for the study to be selected are: subjects aged less than 18-year-old, article published in English, utilized an experimental design and published within the past 20 years. A total of 22 articles were included in this review. The majority of the subjects are boys (55.6%) and employed a randomized controlled trial (RCT) study design (45.4%). Nutritional interventions were categorized into 4 categories which are: "protein substitute" (n = 5), "protein substitute with modified composition" (n = 6), "nutrient supplementation (n=8)", and "distribution and dosage of protein substitute (n = 3)". The most frequently assessed outcomes were biochemical parameters that gauge the effectiveness of metabolic control (68.2%). Overall, "protein substitute enriched with inhibitive amino acids", "long-chain polyunsaturated fatty acids supplementation", and "evenly distributed protein substitute" demonstrated beneficial effects towards the nutritional status, especially in terms of biochemical parameters. In summary, nutritional intervention plays a significant role in improving the nutritional status of AANMD patients. Further investigations of nutritional intervention among AANMD children using a meta-analysis approach are necessary for better comprehension of their impact in management of AANMD disorders.
  10. Hon KW, Zainal Abidin SA, Othman I, Naidu R
    Front Pharmacol, 2021;12:768861.
    PMID: 34887764 DOI: 10.3389/fphar.2021.768861
    Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
  11. Mohd Yusof Chan NN, Idris A, Zainal Abidin ZH, Tajuddin HA, Abdullah Z
    RSC Adv, 2021 Apr 07;11(22):13409-13445.
    PMID: 35423891 DOI: 10.1039/d1ra00129a
    Large (mega) Stokes shift molecules have shown great potential in white light emission for optoelectronic applications, such as flat panel display technology, light-emitting diodes, photosensitizers, molecular probes, cellular and bioimaging, and other applications. This review aims to summarize recent developments of white light generation that incorporate a large Stokes shift component, key approaches to designing large Stokes shift molecules, perspectives on future opportunities, and remaining challenges confronting this emerging research field. After a brief introduction of feasible pathways in generating white light, exemplifications of large Stokes shift molecules as white light candidates from organic and inorganic-based materials are illustrated. Various possible ways to design such molecules have been revealed by integrating the photophysical mechanisms that are essential to produce red-shifted emission upon photoexcitation, such as excited state intramolecular proton transfer (ESIPT), intramolecular charge transfer (ICT), excited state geometrical relaxation or structural deformation, aggregation-induced emission (AIE) alongside the different formations of aggregates, interplay between monomer and excimer emission, host-guest interaction, and lastly metal to ligand charge transfer (MLCT) via harvesting triplet state. Furthermore, previously reported fluorescent materials are described and categorized based on luminescence behaviors on account of the Stokes shifts value. This review will serve as a rationalized introduction and reference for researchers who are interested in exploring large or mega Stokes shift molecules, and will motivate new strategies along with instigation of persistent efforts in this prominent subject area with great avenues.
  12. Poh ME, Ampikaipakan S, Liam CK, Chai CS, Ramanaidoo D, Haja Mydin H
    J Asthma Allergy, 2021;14:629-640.
    PMID: 34140782 DOI: 10.2147/JAA.S309143
    BACKGROUND: There have been limited reports looking into the care of patients with asthma exacerbations admitted to tertiary hospitals in Southeast Asia. This study aims to determine the extent in which the 2019 Global Initiative for Asthma (GINA) guidelines were being met.

    METHODS: A retrospective study of patients with asthma exacerbations admitted to the University of Malaya Medical Centre (UMMC) and Pantai Hospital Kuala Lumpur (PHKL), Malaysia from 1 July 2019 to 31 December 2019.

    RESULTS: There were significant numbers of patients with previous admissions for asthma in both centres, with almost 50% experiencing an exacerbation in the previous year. Approximately 75% of the patients considered their asthma to be controlled when asked, despite many of them having had a history of acute exacerbations in the previous year. When cross-checked, the level of GINA-defined asthma control remained low, with only 6.4% of the patients deemed to have good control, while asthma was partially controlled in 25.6% of the patients and uncontrolled in 68% of the patients. About 72.1% of the patients reported daytime symptoms, 65.1% of the patients reported night-time symptoms, 70.9% of the patients required frequent usage of rescue inhalers and 72.1% of the patients reported some limitation in their activity prior to the current asthma exacerbation. Almost a quarter of the patients who were admitted had severe or life-threatening exacerbations as defined by GINA. These patients had more hospitalizations in a year and were more likely to have previous admissions requiring non-invasive and invasive ventilation. They were also more likely to be on GINA Step 5 treatment, had a lower mean percent predicted FEV1 and a higher baseline blood eosinophil count. Multivariate analysis revealed that baseline eosinophil count were independently associated with severe or life-threatening asthma exacerbations (odds ratio: 1.01, 95% confidence interval: 1.00-1.01, p=0.001). Failure to adhere to daily controller medications was high in this study (37.2%).

    CONCLUSION: Although the management of asthma exacerbations in tertiary hospitals in Southeast Asia is largely congruous with international guidelines, there is room for improvement. As there is a marked discrepancy between patient-perceived and guideline-defined asthma control, efforts to increase awareness on the dangers of uncontrolled asthma are warranted.

  13. D'Aeth JC, van der Linden MP, McGee L, de Lencastre H, Turner P, Song JH, et al.
    Elife, 2021 Jul 14;10.
    PMID: 34259624 DOI: 10.7554/eLife.67113
    Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-β-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome.
    MeSH terms: Anti-Bacterial Agents/pharmacology*; DNA Transposable Elements; Genes, Bacterial/genetics; Germany; Humans; Phylogeny; Serotyping; Streptococcus pneumoniae/drug effects; Streptococcus pneumoniae/genetics; Macrolides/pharmacology; Pneumococcal Vaccines; Gene Transfer, Horizontal*; Drug Resistance, Bacterial/drug effects*; Drug Resistance, Bacterial/genetics*; Serogroup
  14. Alipal J, Lee TC, Koshy P, Abdullah HZ, Idris MI
    Heliyon, 2021 Jul;7(7):e07408.
    PMID: 34296002 DOI: 10.1016/j.heliyon.2021.e07408
    Anodised titanium has a long history as a coating structure for implants due to its bioactive and ossified surface, which promotes rapid bone integration. In response to the growing literature on anodised titanium, this article is the first to revisit the evolution of anodised titanium as an implant coating. The review reports the process and mechanisms for the engineering of distinctive anodised titanium structures, the significant factors influencing the mechanisms of its formation, bioactivity, as well as recent pre- and post-surface treatments proposed to improve the performance of anodised titanium. The review then broadens the discussion to include future functional trends of anodised titanium, ranging from the provision of higher surface energy interactions in the design of biocomposite coatings (template stencil interface for mechanical interlock) to techniques for measuring the bone-to-implant contact (BIC), each with their own challenges. Overall, this paper provides up-to-date information on the impacts of the structure and function of anodised titanium as an implant coating in vitro and in/ex vivo tests, as well as the four key future challenges that are important for its clinical translations, namely (i) techniques to enhance the mechanical stability and (ii) testing techniques to measure the mechanical stability of anodised titanium, (iii) real-time/in-situ detection methods for surface reactions, and (iv) cost-effectiveness for anodised titanium and its safety as a bone implant coating.
  15. Mawang CI, Azman AS, Fuad AM, Ahamad M
    Biotechnol Rep (Amst), 2021 Dec;32:e00679.
    PMID: 34660214 DOI: 10.1016/j.btre.2021.e00679
    Over the past two decades, various eco-friendly approaches utilizing microbial species to clean up contaminated environments have surfaced. In this aspect, actinobacteria have demonstrated their potential in contaminant degradation. The members of actinobacteria phylum exhibits a cosmopolitan distribution, which means that they can be found widely in both aquatic and terrestrial ecosystems. Actinobacteria play important ecological roles in the environment, such as degrading complex polymers, recycling compounds, and producing bioactive molecules. Hence, using actinobacteria to clean up contaminants is an attractive method in the field of biotechnology. This can be achieved through the green technology of bioaugmentation, whereby the degradative capacity of contaminated areas can be greatly improved through the introduction of specific microorganisms. This review describes actinobacteria as an eco-friendly and a promising technology for the bioaugmentation of contaminants, with focus on pesticides and heavy metals.
  16. Upadhyay N, Tilekar K, Safuan S, Kumar AP, Schweipert M, Meyer-Almes FJ, et al.
    RSC Med Chem, 2021 Sep 23;12(9):1540-1554.
    PMID: 34671737 DOI: 10.1039/d1md00125f
    In anticancer drug discovery, multi-targeting compounds have been beneficial due to their advantages over single-targeting compounds. For instance, VEGFR-2 has a crucial role in angiogenesis and cancer management, whereas HDACs are well-known regulators of epigenetics and have been known to contribute significantly to angiogenesis and carcinogenesis. Herein, we have reported nineteen novel VEGFR-2 and HDAC dual-targeting analogs containing diaryl-pyrazoline thiazolidinediones and their in vitro and in vivo biological evaluation. In particular, the most promising compound 14c has emerged as a dual inhibitor of VEGFR-2 and HDAC. It demonstrated anti-angiogenic activity by inhibiting in vitro HUVEC proliferation, migration, and tube formation. Moreover, an in vivo CAM assay showed that 14c repressed new capillary formation in CAMs. In particular, 14c exhibited cytotoxicity potential on different cancer cell lines such as MCF-7, K562, A549, and HT-29. Additionally, 14c demonstrated significant potency and selectivity against HDAC4 in the sub-micromolar range. To materialize the hypothesis, we also performed molecular docking on the crystal structures of both VEGFR-2 (PDB ID: 1YWN) and HDAC4 (PDB-ID: 4CBY), which corroborated the designing and biological activity. The results indicated that compound 14c could be a potential lead to develop more optimized multi-target analogs with enhanced potency and selectivity.
  17. Yek C, Nam VS, Leang R, Parker DM, Heng S, Souv K, et al.
    PMID: 35373190 DOI: 10.3389/fitd.2021.788590
    Southeast Asia (SEA) emerged relatively unscathed from the first year of the global SARS-CoV-2 pandemic, but as of July 2021 the region is experiencing a surge in case numbers primarily driven by Alpha (B.1.1.7) and subsequently the more transmissible Delta (B.1.617.2) variants. While initial disease burden was mitigated by swift government responses, favorable cultural and societal factors, the more recent rise in cases suggests an under-appreciation of prior prevalence and over-appreciation of possible cross-protective immunity from exposure to endemic viruses, and highlights the effects of vaccine rollout at varying tempos and of variable efficacy. This burgeoning crisis is further complicated by co-existence of malaria and dengue in the region, with implications of serological cross-reactivity on interpretation of SARS-CoV-2 assays and competing resource demands impacting efforts to contain both endemic and pandemic disease.
  18. Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, et al.
    Int J Nanomedicine, 2021;16:7891-7941.
    PMID: 34880614 DOI: 10.2147/IJN.S328135
    Despite recent advances in the diagnosis and treatment of breast cancer (BC), it remains a global health issue affecting millions of women annually. Poor prognosis in BC patients is often linked to drug resistance as well as the lack of effective therapeutic options for metastatic and triple-negative BC. In response to these unmet needs, extensive research efforts have been devoted to exploring the anti-BC potentials of natural products owing to their multi-target mechanisms of action and good safety profiles. Various medicinal plant extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activities in preclinical BC models. Despite the promising preclinical results, however, the clinical translation of natural products has often been hindered by their poor stability, aqueous solubility and bioavailability. There have been attempts to overcome these limitations, particularly via the use of nano-based drug delivery systems (NDDSs). This review highlights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the major classes of NDDSs and their current clinical status in BC treatment. Besides, it also discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants' extracts/essential oils and nine natural bioactive compounds; selected via the screening of various scientific databases, including PubMed, Scopus and Google Scholar, based on the following keywords: "Natural Product AND Nanoparticle AND Breast Cancer". Overall, these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models, with some demonstrating biocompatibility with normal cell lines and mouse models. Further clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in humans.
    MeSH terms: Animals; Female; Humans; Plants, Medicinal*; Drug Delivery Systems; Mice
  19. Vitus V, Ibrahim F, Wan Kamarul Zaman WS
    Polymers (Basel), 2021 Nov 23;13(23).
    PMID: 34883564 DOI: 10.3390/polym13234058
    A scaffold is a crucial biological substitute designed to aid the treatment of damaged tissue caused by trauma and disease. Various scaffolds are developed with different materials, known as biomaterials, and have shown to be a potential tool to facilitate in vitro cell growth, proliferation, and differentiation. Among the materials studied, carbon materials are potential biomaterials that can be used to develop scaffolds for cell growth. Recently, many researchers have attempted to build a scaffold following the origin of the tissue cell by mimicking the pattern of their extracellular matrix (ECM). In addition, extensive studies were performed on the various parameters that could influence cell behaviour. Previous studies have shown that various factors should be considered in scaffold production, including the porosity, pore size, topography, mechanical properties, wettability, and electroconductivity, which are essential in facilitating cellular response on the scaffold. These interferential factors will help determine the appropriate architecture of the carbon-based scaffold, influencing stem cell (SC) response. Hence, this paper reviews the potential of carbon as a biomaterial for scaffold development. This paper also discusses several crucial factors that can influence the feasibility of the carbon-based scaffold architecture in supporting the efficacy and viability of SCs.
  20. Nasri N, Rusli A, Teramoto N, Jaafar M, Ku Ishak KM, Shafiq MD, et al.
    Polymers (Basel), 2021 Dec 02;13(23).
    PMID: 34883737 DOI: 10.3390/polym13234234
    The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days. Thus, the possibility of virus transmission increases after touching or being in contact with contaminated surfaces. Herein, we aim to provide overviews of various types of antiviral and antimicrobial coating agents, such as antimicrobial polymer-based coating, metal-based coating, functional nanomaterial, and nanocomposite-based coating. The action mode for each type of antimicrobial agent against pathogens is elaborated. In addition, surface properties of the designed antiviral and antimicrobial polymer coating with their influencing factors are discussed in this review. This paper also exhibits several techniques on surface modification to improve surface properties. Various developed research on the development of antiviral/antimicrobial polymer coating to curb the COVID-19 pandemic are also presented in this review.
External Links