AIM: To analyze the existing literature on the effects of TRE with different eating durations on anthropometrics and cardiometabolic health markers in adults with excessive weight and obesity-related metabolic diseases.
METHODS: We reviewed a series of prominent scientific databases, including Medline, Scopus, Web of Science, Academic Search Complete, and Cochrane Library articles to identify published clinical trials on daily TRE in adults with excessive weight and obesity-related metabolic diseases. Randomized controlled trials were assessed for methodological rigor and risk of bias using version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB-2). Outcomes of interest include body weight, waist circumference, fat mass, lean body mass, fasting glucose, insulin, HbA1c, homeostasis model assessment for insulin resistance (HOMA-IR), lipid profiles, C-reactive protein, blood pressure, and heart rate.
RESULTS: Fifteen studies were included in our systematic review. TRE significantly reduces body weight, waist circumference, fat mass, lean body mass, blood glucose, insulin, and triglyceride. However, no significant changes were observed in HbA1c, HOMA-IR, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, heart rate, systolic and diastolic blood pressure. Furthermore, subgroup analyses based on the duration of the eating window revealed significant variation in the effects of TRE intervention depending on the length of the eating window.
CONCLUSION: TRE is a promising chrononutrition-based dietary approach for improving anthropometric and cardiometabolic health. However, further clinical trials are needed to determine the optimal eating duration in TRE intervention for cardiovascular disease prevention.
MATERIALS AND METHODS: We performed a systematic review of articles published on this topic without any restriction on the year of publication. We searched the Directory of Open Access Journals, PubMed, Google Scholar, and Scopus using Boolean logic through various keywords. The search generated a total of 1325 articles, and after screening for duplicates and implementing inclusion and exclusion criteria, qualitative synthesis (i.e., qualitative systematic review) was performed on 37 articles.
RESULTS: The synthesized information indicated that 18 Gram-positive and 13 Gram-negative bacterial species from goats and sheep were resistant to ten antibiotics, namely penicillin, ampicillin, amoxicillin, chloramphenicol, streptomycin, tetracycline, cephalothin, gentamicin, ciprofloxacin (CIP), and sulfamethoxazole. The prevalence of antibiotic resistance ranged from 0.4% to 100%. However, up to 100% of some bacteria, namely, Salmonella Dublin, Aeromonas caviae, and Aeromonas sobria, were susceptible to CIP. Staphylococcus aureus and Escherichia coli were highly resistant to all antibiotics tested. Moreover, eight of the ten antibiotics tested were critically important antibiotics for humans.
CONCLUSION: Antibiotic-resistant bacteria in goats and sheep are a potential risk to animal and human health. Collaboration between all stakeholders and further research is needed to prevent the negative impacts of antibiotic resistance.
MATERIALS AND METHODS: One hundred and twelve mice were given incision wounds and infected with methicillin-resistant Staphylococcus aureus (MRSA). The study used a factorial design with two factors: The type of therapy (n = 7) and irradiation time (days 1, 2, 4, and 6). The mice were divided into seven therapy groups: Control group with NaCl, control with Sofra-tulle® treatment, red-laser therapy (650 nm, 3.5 J/cm2), blue-laser therapy (405 nm, 3.5 J/cm2), ozone therapy, red-laser therapy (650 nm, 3.5 J/cm2) with ozone, and blue-laser therapy (405 nm, 3.5 J/cm2) with ozone. This therapy was performed using irradiation perpendicular to the wound area. The photosensitizer used was curcumin 10 mg/mL, which was applied to the wound area before exposure to a laser and ozone. The ozone concentration was 0.011 mg/L with a flow time of 80 s. The test parameters were the number of collagens, bacterial colonies, lymphocytes, monocytes, and wound length measurement to determine their acceleration effects on wound healing. Data were analyzed by a two-way (factorial) analysis of variance test.
RESULTS: Acceleration of wound healing was significantly different between treatments with a laser or a laser-ozone combination and treatment using 95% sodium chloride (NaCl) and Sofra-tulle®. On day 6, the blue-laser with ozone treatment group had efficiently increased the number of bacteria and reduced the wound length, and the red-laser treatment with ozone increased the amount of collagen. In addition, the red-laser also reduced the number of lymphocytes and monocytes, which can have an impact on accelerating wound healing. Blue-laser therapy was very effective for increasing the number of epithelia.
CONCLUSION: The blue- and red-laser combined with ozone treatments effectively accelerated the healing of incisional wounds infected with MRSA bacteria.
METHODS: A systematic review was performed on articles published from 2014-2021 related to maternal anemia and stunting. The electronic databases used were ScienceDirect, PubMed, Scopus, ProQuest, Google Search, and AJOG (American Journal of Obstetrics and Gynecology). The literature search was performed up to December 7, 2021.
RESULTS: Twelve studies were included. Nine studies examined the correlation between maternal anemia and length or weight in children. Seven of the nine studies showed an association between maternal anemia and stunting in children; the others showed an association between maternal anemia and birth length. Three studies found no association between maternal anemia and stunting in children under age 5 y.
CONCLUSIONS: The current review emphasizes that stunting in children may be associated with maternal anemia, specifically in developing countries. This implies that it is crucial to prevent anemia in adolescent girls and women before and during pregnancy as a part of programs to eliminate stunting in children.