METHODS: Bacterial DNA was extracted from biopsy samples of patients presenting dyspepsia symptoms with H. pylori positive from cultures and histology. DNA was amplified from the V3-V4 regions of the 16S rRNA gene. In-vitro E-test was used to detect antibiotic resistance. Microbiome community analysis was conducted through α-diversity, β-diversity, and relative abundance.
RESULTS: Sixty-nine H. pylori positive samples were eligible after quality filtering. Following resistance status to five antibiotics, samples were classified into 24 sensitive, 24 single resistance, 16 double resistance, 5 triple resistance. Samples were mostly resistant to metronidazole (73.33%; 33/45). Comparation of four groups displayed significantly elevated α-diversity parameters under the multidrug resistance condition (all P <0.05). A notable change was observed in triple-resistant compared to sensitive (P <0.05) and double-resistant (P <0.05) groups. Differences in β-diversity by UniFrac and Jaccard were not significant in terms of the resistance (P = 0.113 and P = 0.275, respectively). In the triple-resistant group, the relative abundance of Helicobacter genera was lower, whereas that of Streptococcus increased. Moreover, the linear discriminant analysis effect size (LEfSe) was associated with the presence of Corynebacterium and Saccharimonadales in the single-resistant group and Pseudomonas and Cloacibacterium in the triple-resistant group.
CONCLUSION: Our results suggest that the resistant samples showed a higher trend of diversity and evenness than the sensitive samples. The abundance of H. pylori in the triple-resistant samples decreased with increasing cohabitation of pathogenic bacteria, which may support antimicrobial resistance. However, antibiotic susceptibility determined by the E-test may not completely represent the resistance status.
SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11270-023-06279-8.
EXPERIMENTAL APPROACH: Rhizome and leaves of C. caesia were dried with oven (OD) and freeze (FD)-drying methods, and extracted with different Φ(ethanol,water)=100:0, 80:20, 50:50 and 0:100. The bioactivities of C. caesia extracts were evaluated using in vitro tests; total phenolic content (TPC), antioxidant (DPPH and FRAP) and α-glucosidase inhibitory activity. Proton nuclear magnetic resonance (1H NMR)-based metabolomics approach was employed to differentiate the most active extracts based on their metabolite profiles and correlation with bioactivities.
RESULTS AND CONCLUSIONS: The FD rhizome extracted with Φ(ethanol,water)=100:0 was observed to have potent TPC expressed as gallic acid equivalents, FRAP expressed as Trolox equivalents and α-glucosidase inhibitory activity with values of (45.4±2.1) mg/g extract, (147.7±8.3) mg/g extract and (265.5±38.6) µg/mL (IC50), respectively. Meanwhile, for DPPH scavenging activity, the Φ(ethanol,water)=80:20 and 100:0 extracts of FD rhizome showed the highest activity with no significant difference between them. Hence, the FD rhizome extracts were selected for further metabolomics analysis. Principal component analysis (PCA) showed clear discrimination among the different extracts. Partial least square (PLS) analysis showed positive correlations of the metabolites, including xanthorrhizol derivative, 1-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-(6E)-6-heptene-3,4-dione, valine, luteolin, zedoardiol, β-turmerone, selina-4(15),7(11)-dien-8-one, zedoalactone B and germacrone, with the antioxidant and α-glucosidase inhibition activities, whereas curdione and 1-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-(lE,6E)-1,6-heptadiene3,4-dione were correlated with α-glucosidase inhibitory activity.
NOVELTY AND SCIENTIFIC CONTRIBUTION: C. caesia rhizome and leaf extracts contained phenolic compounds and had varies antioxidant and α-glucosidase inhibitory capacities. These findings strongly suggest that the rhizomes of C. caesia are an invaluable natural source of active ingredients for applications in pharmaceutical and food industries.
EXPERIMENTAL APPROACH: The influence of soy lecithin, sodium caseinate and soy lecithin/sodium caseinate at 1:1 ratio on the physicochemical properties and stability of lycopene nanodispersion prepared using the emulsification-evaporation methods before and after treatment at different pH, ionic strength and temperature were investigated. The in vitro bioaccessibility of the nanodispersions was also studied.
RESULTS AND CONCLUSION: Under neutral pH conditions, nanodispersion stabilized with soy lecithin had the highest physical stability and the smallest particle size (78 nm), the lowest polydispersity index (PDI) value (0.180) and highest zeta potential (-64 mV) but the lowest lycopene concentration (1.826 mg/100 mL). Conversely, nanodispersion stabilized with sodium caseinate had the lowest physical stability. Combining the soy lecithin with sodium caseinate at 1:1 ratio resulted in a physically stable lycopene nanodispersion with the highest lycopene concentration (2.656 mg/100 mL). The lycopene nanodispersion produced by soy lecithin also had high physical stability under different pH range (pH=2-8) where the particle size, PDI and zeta potential remained fairly consistent. The nanodispersion containing sodium caseinate was unstable and droplet aggregation occurred when the pH was reduced close to the isoelectric point of sodium caseinate (pH=4-5). The particle size and PDI value of nanodispersion stabilized with soy lecithin and sodium caseinate mixture increased sharply when the NaCl concentration increased above 100 mM, while the soy lecithin and sodium caseinate counterparts were more stable. All of the nanodispersions showed good stability with respect to temperature changes (30-100 °C) except for the one stabilized by sodium caseinate, which exhibited an increased particle size when heated to above 60 °C. The combination of soy lecithin and sodium caseinate was found to increase the bioaccessibility of the lycopene nanodispersion. The physicochemical properties, stability and extent of the lycopene nanodispersion digestion highly depend on the emulsifier type.
NOVELTY AND SCIENTIFIC CONTRIBUTION: Producing a nanodispersion is considered one of the best ways to overcome the poor water solubility, stability and bioavailability issues of lycopene. Currently, studies related to lycopene-fortified delivery systems, particularly in the form of nanodispersion, are still limited. The information obtained on the physicochemical properties, stability and bioaccessibility of lycopene nanodispersion is useful for the development of an effective delivery system for various functional lipids.
PATIENTS AND METHODS: In the single-blind, randomized controlled trial performed between April 2015 and August 2016, 28 participants were randomized between two exercise interventions (FES-LCE+PRT and FES-LCE alone), and training was conducted over 12 weeks. The isometric muscle peak torque and muscle volume for both lower limbs were measured at the baseline and after 6 and 12 weeks. Linear mixed-model analysis of variance was performed to test the effects of FES-LCE+PRT versus FES-LCE on each outcome measure over time via an intention-to-treat analysis.
RESULTS: Twenty-three participants (18 males, 5 females; mean age: 33.4±9.7 years; range 21 to 50 years) completed study (10 in the FES-LCE+PRT group, and 13 in the FES-LCE group). The 12-week pre-and posttraining change for left hamstrings' muscle peak torque in the FES-LCE+PRT group (mean difference=4.5±7.9 Nm, 45% change, p<0.05) was consistently higher than that in the FES-LCE group (mean difference=2.4±10.3 Nm, 4% change; p<0.018). The improvement in the right quadriceps muscle's peak torque of the FES-LCE+PRT group (mean difference=19±7.6 Nm, 31% change, p<0.05) was more significant compared to the FES-LCE group. The left muscle volume showed a remarkable increase after 12 weeks in the FES-LCE+PRT group (mean difference=0.3±9.3 L, 7% change, p<0.05).
CONCLUSION: The combination of PRT and FES-LCE was better in improving lower limb muscle strength and volume in chronic incomplete individuals with spinal cord injury.
METHODS: Period of observation: March 1st, 2020 March 1st, 2021.
INCLUSION CRITERIA: patients included in the database since 2015 and still receiving HPN on March 1st, 2020 as well as new patients included in the database during the period of observation. Data related to the previous 12 months and recorded on March 1st 2021: 1) occurrence of COVID-19 infection since the beginning of the pandemic (yes, no, unknown); 2) infection severity (asymptomatic; mild, no-hospitalization; moderate, hospitalization no-ICU; severe, hospitalization in ICU); 3) vaccinated against COVID-19 (yes, no, unknown); 4) patient outcome on March 1st 2021: still on HPN, weaned off HPN, deceased, lost to follow up.
RESULTS: Sixty-eight centres from 23 countries included 4680 patients. Data on COVID-19 were available for 55.1% of patients. The cumulative incidence of infection was 9.6% in the total group and ranged from 0% to 21.9% in the cohorts of individual countries. Infection severity was reported as: asymptomatic 26.7%, mild 32.0%, moderate 36.0%, severe 5.3%. Vaccination status was unknown in 62.0% of patients, non-vaccinated 25.2%, vaccinated 12.8%. Patient outcome was reported as: still on HPN 78.6%, weaned off HPN 10.6%, deceased 9.7%, lost to follow up 1.1%. A higher incidence of infection (p = 0.04), greater severity of infection (p
OBJECTIVE: This systematic review examined the components of pharmacists-delivered COPD self-management interventions according to an established taxonomy of behaviour change techniques (BCTs).
METHODS: A systematic search was conducted on PubMed, ScienceDirect, OVID, and Google Scholar from January 2011 to December 2021 for studies of pharmacist-delivered self-management interventions in COPD patients.
RESULTS: A total of seventeen studies of intervention were eligible for inclusion in the narrative review. Interventions were educational and were delivered individually and face-to-face for the first session. Across studies, pharmacists spent an average of 35 min on the first meeting and had an average of 6 follow-up sessions. Recurrent BCTs in pharmacist interventions were "Information on the health consequence", "Feedback on behaviour", "Instruction on how to perform a behaviour", "Demonstration of the behaviour" and "Behavioural practice/rehearsal".
CONCLUSIONS: Pharmacists have provided interventions towards improving health behaviours, especially on adherence and usage of inhaler devices for patients with COPD. Future self-management interventions should be designed using the identified BCTs for the improvement of COPD self-management and disease outcomes.
METHOD: The study searched eight databases (Cochrane library, EBSCOHost, Embase, OVID MEDLINE, ProQuest, PubMed, Scopus, and Web of Science) for articles that met these criteria: (i) nursing staff, (ii) any virtual reality technology intervention for education, all levels of immersion, [1] randomized control trial and quasi-experiment study, and (iv) published articles and unpublished theses. The standardized mean difference was measured. The random effect model was applied to measure the main outcome of the study with a significance level of p