Browse publications by year: 2023

  1. Tay YW, Tan AH, Lim JL, Lohmann K, Ibrahim KA, Abdul Aziz Z, et al.
    Parkinsonism Relat Disord, 2023 Jun;111:105399.
    PMID: 37209484 DOI: 10.1016/j.parkreldis.2023.105399
    BACKGROUND: About 5-10% of Parkinson's disease (PD) cases are early onset (EOPD), with several genes implicated, including GBA1, PRKN, PINK1, and SNCA. The spectrum and frequency of mutations vary across populations and globally diverse studies are crucial to comprehensively understand the genetic architecture of PD. The ancestral diversity of Southeast Asians offers opportunities to uncover a rich PD genetics landscape, and identify common regional mutations and new pathogenic variants.

    OBJECTIVES: This study aimed to investigate the genetic architecture of EOPD in a multi-ethnic Malaysian cohort.

    METHODS: 161 index patients with PD onset ≤50 years were recruited from multiple centers across Malaysia. A two-step approach to genetic testing was used, combining a next-generation sequencing-based PD gene panel and multiplex ligation-dependent probe amplification (MLPA).

    RESULTS: Thirty-five patients (21.7%) carried pathogenic or likely pathogenic variants involving (in decreasing order of frequency): GBA1, PRKN, PINK1, DJ-1, LRRK2, and ATP13A2. Pathogenic/likely pathogenic variants in GBA1 were identified in thirteen patients (8.1%), and were also commonly found in PRKN and PINK1 (11/161 = 6.8% and 6/161 = 3.7%, respectively). The overall detection rate was even higher in those with familial history (48.5%) or age of diagnosis ≤40 years (34.8%). PRKN exon 7 deletion and the PINK1 p.Leu347Pro variant appear to be common among Malay patients. Many novel variants were found across the PD-related genes.

    CONCLUSIONS: This study provides novel insights into the genetic architecture of EOPD in Southeast Asians, expands the genetic spectrum in PD-related genes, and highlights the importance of diversifying PD genetic research to include under-represented populations.

    MeSH terms: Adult; Exons; Genetic Testing; Humans; Mutation/genetics; Age of Onset; Asian Continental Ancestry Group/genetics; Ubiquitin-Protein Ligases/genetics
  2. Zhou J, Wu C, Yeh PJ, Ju J, Zhong L, Wang S, et al.
    Sci Total Environ, 2023 Sep 01;889:164274.
    PMID: 37209749 DOI: 10.1016/j.scitotenv.2023.164274
    The successive flood-heat extreme (SFHE) event, which threatens the securities of human health, economy, and building environment, has attracted extensive research attention recently. However, the potential changes in SFHE characteristics and the global population exposure to SFHE under anthropogenic warming remain unclear. Here, we present a global-scale evaluation of the projected changes and uncertainties in SFHE characteristics (frequency, intensity, duration, land exposure) and population exposure under the Representative Concentration Pathway (RCP) 2.6 and 6.0 scenarios, based on the multi-model ensembles (five global water models forced by four global climate models) within the Inter-Sectoral Impact Model Intercomparison Project 2b framework. The results reveal that, relative to the 1970-1999 baseline period, the SFHE frequency is projected to increase nearly globally by the end of this century, especially in the Qinghai-Tibet Plateau (>20 events/30-year) and the tropical regions (e.g., northern South America, central Africa, and southeastern Asia, >15 events/30-year). The projected higher SFHE frequency is generally accompanied by a larger model uncertainty. By the end of this century, the SFHE land exposure is expected to increase by 12 % (20 %) under RCP2.6 (RCP6.0), and the intervals between flood and heatwave in SFHE tend to decrease by up to 3 days under both RCPs, implying the more intermittent SFHE occurrence under future warming. The SFHE events will lead to the higher population exposure in the Indian Peninsula and central Africa (<10 million person-days) and eastern Asia (<5 million person-days) due to the higher population density and the longer SFHE duration. Partial correlation analysis indicates that the contribution of flood to the SFHE frequency is greater than that of heatwave for most global regions, but the SFHE frequency is dominated by the heatwave in northern North America and northern Asia.
    MeSH terms: Hot Temperature*; Humans; Models, Theoretical; Tibet; Floods; Climate Change*
  3. Nguyen TB, Nguyen TK, Chen CW, Chen WH, Bui XT, Lam SS, et al.
    Bioresour Technol, 2023 Aug;382:129182.
    PMID: 37210031 DOI: 10.1016/j.biortech.2023.129182
    In this study, biochar produced from sunflower seeds husk was activated through ZnCl2 to support the NiCo2O4 nanoparticles (NiCo2O4@ZSF) in catalytic activation of peroxymonosulfate (PMS) toward tetracycline (TC) removal from aqueous solution. The good dispersion of NiCo2O4 NPs on the ZSF surface provided sufficient active sites and abundant functional groups for the adsorption and catalytic reaction. The NiCo2O4@ZSF activating PMS showed high removal efficiency up to 99% after 30 min under optimal condition ([NiCo2O4@ZSF] = 25 mg L-1, [PMS] = 0.04 mM, [TC] = 0.02 mM and pH = 7). The catalyst also exhibited good adsorption performance with a maximum adsorption capacity of 322.58 mg g-1. Sulfate radicals (SO4•-), superoxide radical (O2•-), and singlet oxygen (1O2) played a decisive role in the NiCo2O4@ZSF/PMS system. In conclusion, our research elucidated the production of highly efficient carbon-based catalysts for environmental remediation, and also emphasized the potential application of NiCo2O4 doped biochar.
    MeSH terms: Anti-Bacterial Agents; Helianthus*; Peroxides/chemistry; Tetracycline; Water
  4. Zhang Y, Ren H, Li B, Udin SM, Maarof H, Zhou W, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124829.
    PMID: 37210053 DOI: 10.1016/j.ijbiomac.2023.124829
    Deep eutectic solvents (DESs) composed by amino acids (L-arginine, L-proline, L-alanine) as the hydrogen bond acceptors (HBAs) and carboxylic acids (formic acid, acetic acid, lactic acid, levulinic acid) as hydrogen bond donors (HBDs) were prepared and used for the dissolution of dealkaline lignin (DAL). The mechanism of lignin dissolution in DESs was explored at molecular level by combining the analysis of Kamlet-Taft (K-T) solvatochromic parameters, FTIR spectrum and density functional theory (DFT) calculations of DESs. Firstly, it was found that the formation of new hydrogen bonds between lignin and DESs mainly drove the dissolution of lignin, which were accompanied by the erosion of hydrogen bond networks in both lignin and DESs. The nature of hydrogen bond network within DESs was fundamentally determined by the type and number of functional groups in both HBA and HBD, which affected its ability to form hydrogen bond with lignin. One hydroxyl group and carboxyl group in HBDs provided active protons, which facilitated proton-catalyzed cleavage of β-O-4, thus enhancing the dissolution of DESs. The superfluous functional group resulted in more extensive and stronger hydrogen bond network in the DESs, thus decreasing the lignin dissolving ability. Moreover, it was found that lignin solubility had a closed positive correlation with the subtraction value of α and β (net hydrogen donating ability) of DESs. Among all the investigated DESs, L-alanine/formic acid (1:3) with the strong hydrogen-bond donating ability (acidity), weak hydrogen-bond accepting ability (basicity) and small steric-hindrance effect showed the best lignin dissolving ability (23.99 wt%, 60 °C). On top of that, the value of α and β of L-proline/carboxylic acids DESs showed some positive correlation with the global electrostatic potential (ESP) maxima and minima of the corresponding DESs respectively, indicating the analysis of ESP quantitative distributions of DESs could be an effective tool for DESs screening and design for lignin dissolution as well as other applications.
    MeSH terms: Alanine; Amino Acids; Carboxylic Acids; Proline; Solubility; Solvents/chemistry; Biomass
  5. Yacob N, Ahmad NA, Safii SH, Yunus N, Abdul Razak F
    J Prosthet Dent, 2023 Jul;130(1):131.e1-131.e7.
    PMID: 37210224 DOI: 10.1016/j.prosdent.2023.04.017
    STATEMENT OF PROBLEM: How the build orientation of a 3-dimensionally (3D) printed denture affects microbial adhesion is unclear.

    PURPOSE: The purpose of this in vitro study was to compare the adherence of Streptococcus spp. and Candida spp. on 3D-printed denture bases prepared at different build orientations with conventional heat-polymerized resin.

    MATERIAL AND METHODS: Resin specimens (n=5) with standardized 28.3 mm2 surface area were 3D printed at 0 and 60 degrees, and heat-polymerized (3DP-0, 3DP-60, and HP, respectively). The specimens were placed in a Nordini artificial mouth (NAM) model and exposed to 2 mL of clarified whole saliva to create a pellicle-coated substratum. Suspensions of Streptococcus mitis and Streptococcus sanguinis, Candida albicans and Candida glabrata, and a mixed species, each at 108 cfu/mL were pumped separately into the model for 24 hours to promote microbial adhesion. The resin specimens were then removed, placed in fresh media, and sonicated to dislodge attached microbes. Each suspension (100 μL) was aliquoted and spread on agar plates for colony counting. The resin specimens were also examined under a scanning electron microscope. The interaction between types of specimen and groups of microbes was examined with 2-way ANOVA and then further analysis with Tukey honest significant test and Kruskal-Wallis post hoc tests (α=.05).

    RESULTS: A significant interaction was observed between the 3DP-0, 3DP-60, and HP specimen types and the groups of microbes adhering to the corresponding denture resin specimens (P

    MeSH terms: Candida*; Candida albicans; Denture Bases*; Hot Temperature; Materials Testing; Surface Properties
  6. Kou L, Ye N, Waheed A, Auliya RZ, Wu C, Ooi PC, et al.
    Sci Rep, 2023 May 20;13(1):8194.
    PMID: 37210533 DOI: 10.1038/s41598-023-35183-8
    Artificial electronic synapses are commonly used to simulate biological synapses to realize various learning functions, regarded as one of the key technologies in the next generation of neurological computation. This work used a simple spin coating technique to fabricate polyimide (PI):graphene quantum dots(GQDs) memristor structure. As a result, the devices exhibit remarkably stable exponentially decaying postsynaptic suppression current over time, as interpreted in the spike-timing-dependent plasticity phenomenon. Furthermore, with the increase of the applied electrical signal over time, the conductance of the electrical synapse gradually changes, and the electronic synapse also shows plasticity dependence on the amplitude and frequency of the pulse applied. In particular, the devices with the structure of Ag/PI:GQDs/ITO prepared in this study can produce a stable response to the stimulation of electrical signals between millivolt to volt, showing not only high sensitivity but also a wide range of "feelings", which makes the electronic synapses take a step forwards to emulate biological synapses. Meanwhile, the electronic conduction mechanisms of the device are also studied and expounded in detail. The findings in this work lay a foundation for developing brain-like neuromorphic modeling in artificial intelligence.
  7. Xuan KM, Bakar NA, Fadzli Mustaffa KM, Azlan M
    Cent Eur J Immunol, 2023;48(1):54-62.
    PMID: 37206586 DOI: 10.5114/ceji.2023.126650
    Malaria remains one of the most common human infections worldwide. In endemic areas, malaria is a leading cause of morbidity and mortality and it imposes significant socioeconomic burdens on the people affected. Monocytes are part of the immune system controlling parasite burden and protecting the host against malaria infection. Monocytes play their protective roles against malaria via phagocytosis, cytokine production and antigen presentation. Though monocytes are crucial for clearance of malaria infection, they have also been shown to cause adverse clinical outcomes. In this review, we discuss recent findings regarding the role of monocytes in malaria via mechanisms such as parasite detection and clearance, pro-inflammatory activities, and activation of other immune components. We also highlight the role of different monocyte subsets, and other myeloid cells that are involved in malaria infection. However, more investigations are required in order to explore the exact roles of these monocytes in malaria infection.
  8. Zainol Abidin IZ, Manogaran T, Abdul Wahab RM, Karsani SA, Yazid MD, Yazid F, et al.
    Curr Stem Cell Res Ther, 2023;18(3):417-428.
    PMID: 35762553 DOI: 10.2174/1574888X17666220627145424
    BACKGROUND: Proteomic is capable of elucidating complex biological systems through protein expression, function, and interaction under a particular condition.

    OBJECTIVE: This study aimed to determine the potential of ascorbic acid alone in inducing differentially expressed osteoblast-related proteins in dental stem cells via the liquid chromatography-mass spectrometry/ mass spectrometry (LC-MS/MS) approach.

    METHODS: The cells were isolated from deciduous (SHED) and permanent teeth (DPSC) and induced with 10 μg/mL of ascorbic acid. Bone mineralisation and osteoblast gene expression were determined using von Kossa staining and reverse transcriptase-polymerase chain reaction. The label-free protein samples were harvested on days 7 and 21, followed by protein identification and quantification using LC-MS/MS. Based on the similar protein expressed throughout treatment and controls for SHED and DPSC, overall biological processes followed by osteoblast-related protein abundance were determined using the PANTHER database. STRING database was performed to determine differentially expressed proteins as candidates for SHED and DPSC during osteoblast development.

    RESULTS: Both cells indicated brownish mineral stain and expression of osteoblast-related genes on day 21. Overall, a total of 700 proteins were similar among all treatments on days 7 and 21, with 482 proteins appearing in the PANTHER database. Osteoblast-related protein abundance indicated 31 and 14 proteins related to SHED and DPSC, respectively. Further analysis by the STRING database identified only 22 and 11 proteins from the respective group. Differential expressed analysis of similar proteins from these two groups revealed ACTN4 and ACTN1 as proteins involved in both SHED and DPSC. In addition, three (PSMD11/RPN11, PLS3, and CLIC1) and one (SYNCRIP) protein were differentially expressed specifically for SHED and DPSC, respectively.

    CONCLUSION: Proteome differential expression showed that ascorbic acid alone could induce osteoblastrelated proteins in SHED and DPSC and generate specific differentially expressed protein markers.

    MeSH terms: Cell Differentiation; Cells, Cultured; Chromatography, Liquid; Dental Pulp; Humans; Stem Cells; Tooth, Deciduous*; Chloride Channels; Proteomics; Tandem Mass Spectrometry
  9. Vishwas S, Kumar R, Khursheed R, Ramanunny AK, Kumar R, Awasthi A, et al.
    Curr Neuropharmacol, 2023;21(7):1558-1574.
    PMID: 35950245 DOI: 10.2174/1570159X20666220810105421
    Quercetin (Qu), a dietary flavonoid, is obtained from many fruits and vegetables such as coriander, broccoli, capers, asparagus, onion, figs, radish leaves, cranberry, walnuts, and citrus fruits. It has proven its role as a nutraceutical owing to numerous pharmacological effects against various diseases in preclinical studies. Despite these facts, Qu and its nanoparticles are less explored in clinical research as a nutraceutical. The present review covers various neuroprotective actions of Qu against various neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis. A literature search was conducted to systematically review the various mechanistic pathways through which Qu elicits its neuroprotective actions and the challenges associated with raw Qu that compromise therapeutic efficacy. The nanoformulations developed to enhance Qu's therapeutic efficacy are also covered. Various ongoing/completed clinical trials related to Qu in treating various diseases, including NDs, are also tabulated. Despite these many successes, the exploration of research on Qu-loaded nanoformulations is limited mostly to preclinical studies, probably due to poor drug loading and stability of the formulation, time-consuming steps involved in the formulation, and their poor scale-up capacity. Hence, future efforts are required in this area to reach Qu nanoformulations to the clinical level.
    MeSH terms: Humans; Quercetin/pharmacology; Quercetin/therapeutic use; Nanoparticles*
  10. Khan AA, Akhtar S, Yadav Y, Atiya A, Alelwani W, Bannunah AM, et al.
    Curr Drug Deliv, 2023;20(10):1474-1486.
    PMID: 35980056 DOI: 10.2174/1567201819666220817111054
    BACKGROUND: The antiretroviral protease inhibitor drug, lopinavir (LPV), is used to treat HIV-1 infection. LPV is known to have limited oral bioavailability, which may be attributed to its poor aqueous solubility, low efficacy and high first-pass metabolism. Self-nanoemulsifying drug delivery systems (SNEDDS) for LPV have been developed and optimised to counter the current issues.

    METHODS: The titration method was used to prepare LPV-loaded SNEDDS (LPV-SNEDDS). Six different pseudo-ternary phase diagrams were constructed to identify the nanoemulsifying region. The developed formulations were chosen in terms of globule size < 100 nm, dispersity ≤ 0.5, dispersibility (Grade A) and% transmittance > 85. Heating-cooling cycle, freeze-thaw cycle, and centrifugation studies were performed to confirm the stability of the developed SNEDDS.

    RESULTS: The final LPV-SNEDDS (L-14) droplet size was 58.18 ± 0.62 nm, with polydispersity index, zeta potential, and entrapment efficiency (EE%) values of 0.326 ± 0.005, -22.08 ± 1.2 mV, and 98.93 ± 1.18%, respectively. According to high-resolution transmission electron microscopy (HRTEM) analysis, the droplets in the optimised formulation were < 60 nm in size. The selected SNEDDS released nearly 99% of the LPV within 30 min, which was significantly (p < 0.05) higher than the LPV-suspension in methylcellulose (0.5% w/v). It indicates the potential use of SNEDDS to enhance the solubility of LPV, which eventually could help improve the oral bioavailability of LPV. The Caco-2 cellular uptake study showed a significantly (p < 0.05) higher LPV uptake from the SNEEDS (LPV-SNEDDS-L-14) than the free LPV (LPV-suspension).

    CONCLUSION: The LPV-SNEDDS could be a potential carrier for LPV oral delivery.

    MeSH terms: Administration, Oral; Biological Availability; Emulsions; Humans; Particle Size; Solubility; Surface-Active Agents; Caco-2 Cells; Nanoparticles*; Lopinavir
  11. Qureshi F, Yusuf M, Ibrahim H, Kamyab H, Chelliapan S, Pham CQ, et al.
    Environ Res, 2023 Jul 15;229:115963.
    PMID: 37105287 DOI: 10.1016/j.envres.2023.115963
    Hydrogen (H2) is a possible energy transporter and feedstock for energy decarbonization, transportation, and chemical sectors while reducing global warming's consequences. The predominant commercial method for producing H2 today is steam methane reforming (SMR). However, there is still room for development in process intensification, energy optimization, and environmental concerns related to CO2 emissions. Reactors using metallic membranes (MRs) can handle both problems. Compared to traditional reactors, MRs operates at substantially lower pressures and temperatures. As a result, capital and operational costs may be significantly cheaper than traditional reactors. Furthermore, metallic membranes (MMs), particularly Pd and its alloys, naturally permit only H2 permeability, enabling the production of a stream with a purity of up to 99.999%. This review describes several methods for H2 production based on the energy sources utilized. SRM with CO2 capture and storage (CCUS), pyrolysis of methane, and water electrolysis are all investigated as process technologies. A debate based on a color code was also created to classify the purity of H2 generation. Although producing H2 using fossil fuels is presently the least expensive method, green H2 generation has the potential to become an affordable alternative in the future. From 2030 onward, green H2 is anticipated to be less costly than blue hydrogen. Green H2 is more expensive than fossil-based H2 since it uses more energy. Blue H2 has several tempting qualities, but the CCUS technology is pricey, and blue H2 contains carbon. At this time, almost 80-95% of CO2 can be stored and captured by the CCUS technology. Nanomaterials are becoming more significant in solving problems with H2 generation and storage. Sustainable nanoparticles, such as photocatalysts and bio-derived particles, have been emphasized for H2 synthesis. New directions in H2 synthesis and nanomaterials for H2 storage have also been discussed. Further, an overview of the H2 value chain is provided at the end, emphasizing the financial implications and outlook for 2050, i.e., carbon-free H2 and zero-emission H2.
    MeSH terms: Carbon Dioxide*; Hydrogen*; Methane; Steam; Water
  12. Gautam A, Sharma P, Ashokhan S, Yaacob JS, Kumar V, Guleria P
    Environ Res, 2023 Jul 15;229:116023.
    PMID: 37121351 DOI: 10.1016/j.envres.2023.116023
    A field study was conducted to investigate the influence of MgO-NPs priming on growth and development of mustard. Priming of mustard seeds before sowing with MgO-NPs at concentration 10, 50, 100, and 150 μg/ml enhanced the vegetative parameters of plants, with considerable increase in leaf area. MgO-NPs exposure increased the photosynthetic pigment accumulation in mustard that led to increase in biomass, carbohydrate content, and the yield in terms of total grain yield. Increased chlorophyll has simultaneously increased the oxidative stress in plants, and hence stimulated their antioxidant potential. A consistent increase was observed in the content of mustard polyphenols and activity of SOD, CAT, and APX on MgO-NPs exposure. MgO-NPs induced oxidative stress further reduced the protein content and bioavailability in mustard. We further, evaluated the influence of MgO-NPs on the quality of mustard harvested seeds. The seeds harvested from nanoprimed mustard possessed increased antioxidant potential and reduced oxidative stress. The carbohydrate and protein accumulation was significantly enhanced in response to nanopriming. Reduced chlorophyll content in seeds obtained from nanoprimed mustard indicated their potential for disease resistance and stability on long term storage. Therefore, the seeds harvested from MgO-NPs primed mustard were biochemically rich and more stable. Therefore, MgO-NPs priming can be potentially used as a novel strategy for growth promotion in plants where leaves are economically important and a strategy to enhance the seed quality under long term storage conditions.
    MeSH terms: Antioxidants/metabolism; Carbohydrates; Chlorophyll/metabolism; Mustard Plant/metabolism; Seeds/metabolism
  13. Ninomiya K, Arimura H, Tanaka K, Chan WY, Kabata Y, Mizuno S, et al.
    Comput Methods Programs Biomed, 2023 Jun;236:107544.
    PMID: 37148668 DOI: 10.1016/j.cmpb.2023.107544
    OBJECTIVES: To elucidate a novel radiogenomics approach using three-dimensional (3D) topologically invariant Betti numbers (BNs) for topological characterization of epidermal growth factor receptor (EGFR) Del19 and L858R mutation subtypes.

    METHODS: In total, 154 patients (wild-type EGFR, 72 patients; Del19 mutation, 45 patients; and L858R mutation, 37 patients) were retrospectively enrolled and randomly divided into 92 training and 62 test cases. Two support vector machine (SVM) models to distinguish between wild-type and mutant EGFR (mutation [M] classification) as well as between the Del19 and L858R subtypes (subtype [S] classification) were trained using 3DBN features. These features were computed from 3DBN maps by using histogram and texture analyses. The 3DBN maps were generated using computed tomography (CT) images based on the Čech complex constructed on sets of points in the images. These points were defined by coordinates of voxels with CT values higher than several threshold values. The M classification model was built using image features and demographic parameters of sex and smoking status. The SVM models were evaluated by determining their classification accuracies. The feasibility of the 3DBN model was compared with those of conventional radiomic models based on pseudo-3D BN (p3DBN), two-dimensional BN (2DBN), and CT and wavelet-decomposition (WD) images. The validation of the model was repeated with 100 times random sampling.

    RESULTS: The mean test accuracies for M classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.810, 0.733, 0.838, 0.782, and 0.799, respectively. The mean test accuracies for S classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.773, 0.694, 0.657, 0.581, and 0.696, respectively.

    CONCLUSION: 3DBN features, which showed a radiogenomic association with the characteristics of the EGFR Del19/L858R mutation subtypes, yielded higher accuracy for subtype classifications in comparison with conventional features.

    MeSH terms: Humans; Mutation; Retrospective Studies; Tomography, X-Ray Computed/methods; ErbB Receptors/genetics
  14. Im SA, Gennari A, Park YH, Kim JH, Jiang ZF, Gupta S, et al.
    ESMO Open, 2023 Jun;8(3):101541.
    PMID: 37178669 DOI: 10.1016/j.esmoop.2023.101541
    The most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, staging and treatment of patients with metastatic breast cancer (MBC) was published in 2021. A special, hybrid guidelines meeting was convened by ESMO and the Korean Society of Medical Oncology (KSMO) in collaboration with nine other Asian national oncology societies in May 2022 in order to adapt the ESMO 2021 guidelines to take into account the differences associated with the treatment of MBC in Asia. These guidelines represent the consensus opinions reached by a panel of Asian experts in the treatment of patients with MBC representing the oncological societies of China (CSCO), India (ISMPO), Indonesia (ISHMO), Japan (JSMO), Korea (KSMO), Malaysia (MOS), the Philippines (PSMO), Singapore (SSO), Taiwan (TOS) and Thailand (TSCO). The voting was based on the best available scientific evidence and was independent of drug access or practice restrictions in the different Asian countries. The latter were discussed when appropriate. The aim of these guidelines is to provide guidance for the harmonisation of the management of patients with MBC across the different regions of Asia, drawing from data provided by global and Asian trials whilst at the same time integrating the differences in genetics, demographics and scientific evidence, together with restricted access to certain therapeutic strategies.
    MeSH terms: Asia; Female; Humans; India; Medical Oncology; Societies, Medical
  15. O'Connor RC, Worthman CM, Abanga M, Athanassopoulou N, Boyce N, Chan LF, et al.
    Lancet Psychiatry, 2023 Jun;10(6):452-464.
    PMID: 37182526 DOI: 10.1016/S2215-0366(23)00058-5
    Globally, too many people die prematurely from suicide and the physical comorbidities associated with mental illness and mental distress. The purpose of this Review is to mobilise the translation of evidence into prioritised actions that reduce this inequity. The mental health research charity, MQ Mental Health Research, convened an international panel that used roadmapping methods and review evidence to identify key factors, mechanisms, and solutions for premature mortality across the social-ecological system. We identified 12 key overarching risk factors and mechanisms, with more commonalities than differences across the suicide and physical comorbidities domains. We also identified 18 actionable solutions across three organising principles: the integration of mental and physical health care; the prioritisation of prevention while strengthening treatment; and the optimisation of intervention synergies across social-ecological levels and the intervention cycle. These solutions included accessible, integrated high-quality primary care; early life, workplace, and community-based interventions co-designed by the people they should serve; decriminalisation of suicide and restriction of access to lethal means; stigma reduction; reduction of income, gender, and racial inequality; and increased investment. The time to act is now, to rebuild health-care systems, leverage changes in funding landscapes, and address the effects of stigma, discrimination, marginalisation, gender violence, and victimisation.
    MeSH terms: Delivery of Health Care; Humans; Mental Health; Suicide*; Mortality, Premature
  16. Othman NA, Azhar MAAS, Damanhuri NS, Mahadi IA, Abbas MH, Shamsuddin SA, et al.
    Comput Methods Programs Biomed, 2023 Jun;236:107566.
    PMID: 37186981 DOI: 10.1016/j.cmpb.2023.107566
    BACKGROUND AND OBJECTIVE: The identification of insulinaemic pharmacokinetic parameters using the least-squares criterion approach is easily influenced by outlying data due to its sensitivity. Furthermore, the least-squares criterion has a tendency to overfit and produce incorrect results. Hence, this research proposes an alternative approach using the artificial neural network (ANN) with two hidden layers to optimize the identifying of insulinaemic pharmacokinetic parameters. The ANN is selected for its ability to avoid overfitting parameters and its faster speed in processing data.

    METHODS: 18 voluntarily participants were recruited from the Canterbury and Otago region of New Zealand to take part in a Dynamic Insulin Sensitivity and Secretion Test (DISST) clinical trial. A total of 46 DISST data were collected. However, due to ambiguous and inconsistency, 4 data had to be removed. Analysis was done using MATLAB 2020a.

    RESULTS AND DISCUSSION: Results show that, with 42 gathered dataset, the ANN generates higher gains, ∅P = 20.73 [12.21, 28.57] mU·L·mmol-1·min-1 and ∅D = 60.42 [26.85, 131.38] mU·L·mmol-1 as compared to the linear least square method, ∅P = 19.67 [11.81, 28.02] mU·L·mmol-1 ·min-1 and ∅D = 46.21 [7.25, 116.71] mU·L·mmol-1. The average value of the insulin sensitivity (SI) of ANN is lower with, SI = 16 × 10-4 L·mU-1 ·min-1 than the linear least square, SI = 17 × 10-4 L·mU-1 ·min-1.

    CONCLUSION: Although the ANN analysis provided a lower SI value, the results were more dependable than the linear least square model because the ANN approach yielded a better model fitting accuracy than the linear least square method with a lower residual error of less than 5%. With the implementation of this ANN architecture, it shows that ANN able to produce minimal error during optimization process particularly when dealing with outlying data. The findings may provide extra information to clinicians, allowing them to gain a better knowledge of the heterogenous aetiology of diabetes and therapeutic intervention options.

    MeSH terms: Humans; Insulin; Insulin Resistance*; Neural Networks (Computer)
  17. Mussa A, Afolabi HA, Syed NH, Talib M, Murtadha AH, Hajissa K, et al.
    Biomedicines, 2023 Mar 30;11(4).
    PMID: 37189677 DOI: 10.3390/biomedicines11041060
    Breast cancer (BC) is the most common cancer type among women with a distinct clinical presentation, but the survival rate remains moderate despite advances in multimodal therapy. Consequently, a deeper understanding of the molecular etiology is required for the development of more effective treatments for BC. The relationship between inflammation and tumorigenesis is well established, and the activation of the pro-inflammatory transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is frequently identified in BC. Constitutive NF-κB activation is linked to cell survival, metastasis, proliferation, and hormonal, chemo-, and radiotherapy resistance. Moreover, the crosstalk between NF-κB and other transcription factors is well documented. It is reported that vitamin C plays a key role in preventing and treating a number of pathological conditions, including cancer, when administered at remarkably high doses. Indeed, vitamin C can regulate the activation of NF-κB by inhibiting specific NF-κB-dependent genes and multiple stimuli. In this review, we examine the various NF-κB impacts on BC development. We also provide some insight into how the NF-κB network may be targeted as a potential vulnerability by using natural pro-oxidant therapies such as vitamin C.
  18. Yahya N, Manan HA
    Cancers (Basel), 2023 Apr 12;15(8).
    PMID: 37190180 DOI: 10.3390/cancers15082252
    BACKGROUND: Complex anatomy surrounding the oropharynx makes proton therapy (PT), especially intensity-modulated PT (IMPT), a potentially attractive option due to its ability to reduce the volume of irradiated healthy tissues. Dosimetric improvement may not translate to clinically relevant benefits. As outcome data are emerging, we aimed to evaluate the evidence of the quality of life (QOL) and patient-reported outcomes (PROs) following PT for oropharyngeal carcinoma (OC).

    MATERIALS AND METHODS: We searched PubMed and Scopus electronic databases (date: 15 February 2023) to identify original studies on QOL and PROs following PT for OC. We employed a fluid strategy in the search strategy by tracking citations of the initially selected studies. Reports were extracted for information on demographics, main results, and clinical and dose factor correlates. Quality assessment was performed using the NIH's Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. The PRISMA guidelines were followed in the preparation of this report.

    RESULTS: Seven reports were selected, including one from a recently published paper captured from citation tracking. Five compared PT and photon-based therapy, although none were randomized controlled trials. Most endpoints with significant differences favored PT, including xerostomia, cough, need for nutritional supplements, dysgeusia, food taste, appetite, and general symptoms. However, some endpoints favored photon-based therapy (sexual symptoms) or showed no significant difference (e.g., fatigue, pain, sleep, mouth sores). The PROs and QOL improve following PT but do not appear to return to baseline.

    CONCLUSION: Evidence suggests that PT causes less QOL and PRO deterioration than photon-based therapy. Biases due to the non-randomized study design remain obstacles to a firm conclusion. Whether or not PT is cost-effective should be the subject of further investigation.

  19. Nilashi M, Abumalloh RA, Alyami S, Alghamdi A, Alrizq M
    Brain Sci, 2023 Mar 24;13(4).
    PMID: 37190508 DOI: 10.3390/brainsci13040543
    Parkinson's disease (PD) is a complex degenerative brain disease that affects nerve cells in the brain responsible for body movement. Machine learning is widely used to track the progression of PD in its early stages by predicting unified Parkinson's disease rating scale (UPDRS) scores. In this paper, we aim to develop a new method for PD diagnosis with the aid of supervised and unsupervised learning techniques. Our method is developed using the Laplacian score, Gaussian process regression (GPR) and self-organizing maps (SOM). SOM is used to segment the data to handle large PD datasets. The models are then constructed using GPR for the prediction of the UPDRS scores. To select the important features in the PD dataset, we use the Laplacian score in the method. We evaluate the developed approach on a PD dataset including a set of speech signals. The method was evaluated through root-mean-square error (RMSE) and adjusted R-squared (adjusted R²). Our findings reveal that the proposed method is efficient in the prediction of UPDRS scores through a set of speech signals (dysphonia measures). The method evaluation showed that SOM combined with the Laplacian score and Gaussian process regression with the exponential kernel provides the best results for R-squared (Motor-UPDRS = 0.9489; Total-UPDRS = 0.9516) and RMSE (Motor-UPDRS = 0.5144; Total-UPDRS = 0.5105) in predicting UPDRS compared with the other kernels in Gaussian process regression.
  20. Zhou XD, Targher G, Byrne CD, Somers V, Kim SU, Chahal CAA, et al.
    Hepatol Int, 2023 Aug;17(4):773-791.
    PMID: 37204656 DOI: 10.1007/s12072-023-10543-8
    BACKGROUND: Fatty liver disease in the absence of excessive alcohol consumption is an increasingly common condition with a global prevalence of ~ 25-30% and is also associated with cardiovascular disease (CVD). Since systemic metabolic dysfunction underlies its pathogenesis, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has been proposed for this condition. MAFLD is closely intertwined with obesity, type 2 diabetes mellitus and atherogenic dyslipidemia, which are established cardiovascular risk factors. Unlike CVD, which has received attention in the literature on fatty liver disease, the CVD risk associated with MAFLD is often underestimated, especially among Cardiologists.

    METHODS AND RESULTS: A multidisciplinary panel of fifty-two international experts comprising Hepatologists, Endocrinologists, Diabetologists, Cardiologists and Family Physicians from six continents (Asia, Europe, North America, South America, Africa and Oceania) participated in a formal Delphi survey and developed consensus statements on the association between MAFLD and the risk of CVD. Statements were developed on different aspects of CVD risk, ranging from epidemiology to mechanisms, screening, and management.

    CONCULSIONS: The expert panel identified important clinical associations between MAFLD and the risk of CVD that could serve to increase awareness of the adverse metabolic and cardiovascular outcomes of MAFLD. Finally, the expert panel also suggests potential areas for future research.

    MeSH terms: Asia; Humans; Liver Diseases*; Consensus; Non-alcoholic Fatty Liver Disease*
External Links