METHODS: The Gulf-CS registry included 1,513 patients with AMI-CS diagnosed between January 2020 and December 2022.
RESULTS: The incidence of AMI-CS was 4.1% (1513/37379). The median age was 60 years. The most common presentation was ST-elevation MI (73.83%). In-hospital mortality was 45.5%. Majority of patients were in SCAI stage D and E (68.94%). Factors associated with hospital mortality were previous coronary artery bypass graft (OR:2.49; 95%CI: 1.321-4.693), cerebrovascular accident (OR:1.621, 95%CI: 1.032-2.547), chronic kidney disease (OR:1.572; 95%CI1.158-2.136), non-ST-elevation MI (OR:1.744; 95%CI: 1.058-2.873), cardiac arrest (OR:5.702; 95%CI: 3.640-8.933), SCAI stage D and E (OR:19.146; 95CI%: 9.902-37.017), prolonged QRS (OR:10.012; 95%CI: 1.006-1.019), right ventricular dysfunction (OR:1.679; 95%CI: 1.267-2.226) and ventricular septal rupture (OR:6.008; 95%CI: 2.256-15.998). Forty percent had invasive hemodynamic monitoring, 90.02% underwent revascularization, and 45.80% received mechanical circulatory support (41.31% had Intra-Aortic Balloon Pump and 14.21% had Extracorporeal Membrane Oxygenation/Impella devices). Survival at 12 months was 51.49% (95% CI: 46.44- 56.29%).
CONCLUSIONS: The study highlighted the significant burden of AMI-CS in this region, with high in-hospital mortality. The study identified several key risk factors associated with increased hospital mortality. Despite the utilization of invasive hemodynamic monitoring, revascularization, and mechanical circulatory support in a substantial proportion of patients, the 12-month survival rate remained relatively low.
METHODS: A total of 29 patients aged 10 to 18 received a daily oral dose of 50 mg TRF for six months (January 2020 to February 2022), and all had fatty liver disease were detected by ultrasonography and abnormally high alanine transaminase levels (at least two-fold higher than the upper limits for their respective genders). Various parameters, including biochemical markers, FibroScan, LiverFASt, DNA damage, and cytokine expression, were monitored.
RESULTS: APO-A1 and AST levels decreased significantly from 1.39 ± 0.3 to 1.22 ± 0.2 g/L (P = 0.002) and from 30 ± 12 to 22 ± 10 g/L (P = 0.038), respectively, in the TRF group post-intervention. Hepatic steatosis was significantly reduced in the placebo group from 309.38 ± 53.60 db/m to 277.62 ± 39.55 db/m (p = 0.048), but not in the TRF group. Comet assay analysis showed a significant reduction in the DNA damage parameters in the TRF group in the post-intervention period compared to the baseline, with tail length decreasing from 28.34 ± 10.9 to 21.69 ± 9.84; (p = 0.049) and with tail DNA (%) decreasing from 54.13 ± 22.1to 46.23 ± 17.9; (p = 0.043). Pro-inflammatory cytokine expression levels were significantly lower in the TRF group compared to baseline levels for IL-6 (2.10 6.3 to 0.7 1.0 pg/mL; p = 0.047 pg/mL) and TNF-1 (1.73 5.5 pg/mL to 0.7 0.5 pg/mL; p = 0.045).
CONCLUSION: The study provides evidence that TRF supplementation may offer a risk-free treatment option for children with obesity and NAFLD. The antioxidant and anti-inflammatory properties of TRF offer a promising adjuvant therapy for NAFLD treatment. In combination with lifestyle modifications such as exercise and calorie restriction, TRF could play an essential role in the prevention of NAFLD in the future. However, further studies are needed to explore the long-term effects of TRF supplementation on NAFLD in children.
TRIAL REGISTRATION: The study has been registered with the International Clinical Trial Registry under reference number (NCT05905185) retrospective registration on (15/06/2023).