METHODS: Databases of MEDLINE, EMBASE, and CENTRAL were searched from their starting dates until April 2023. Randomized Clinical Trials (RCT) and observational studies comparing nalbuphine and control in children undergoing surgery were included.
RESULTS: Eight studies (n = 1466 patients) were eligible for inclusion of data analysis. Compared to the control, our pooled data showed that the nalbuphine group was associated with lower incidence of emergence delirium (RR = 0.38, 95% CI [0.30, 0.47], p < 0.001) and reduced postoperative pain scores (MD = -0.98, 95% CI [-1.92, -0.04], p = 0.04).
CONCLUSIONS: This review showed the administration of nalbuphine is associated with significant decrease in the incidence of emergence delirium and postoperative pain scores among children undergoing surgery. However, due to limited sample size, high degree of heterogeneity and low level of evidence, future adequately powered trials are warranted to explore the efficacy of nalbuphine on emergence delirium among the pediatric population.
PURPOSE: The purpose of part I of this study was to differentiate among Aramany class I obturators of 4 designs regarding retention and associated stress using numerical and experimental methods.
MATERIAL AND METHODS: Four finite element models and 36 different base obturators were fabricated and divided into 9 acrylic resin bases retained with Adams clasps and 9 linear, 9 tripodal, and 9 fully tripodal design obturators from casts obtained from a scanned skull. After modification, the prostheses were fabricated on the casts obtained from a 3-dimensionally printed cast. The retention was evaluated, and the data were collected and analyzed using a statistical software program (α=.05). The displacement and associated stress in the assorted casts were compared by using 5-N displacing force at 3 points using finite element analysis. The quantitative assessment was made by measuring the displacement and von Mises stress distribution on the prostheses and their supporting structures. The qualitative analysis was done by using a visual color mapping to depict stress location and intensity.
RESULTS: No significant differences were found between fully tripodal (4.478 ±2.303 MPa) and tripodal obturators (4.478 ±2.286 MPa; P=.153), although fully tripodal showed more resistance to anterior displacement (4.522 ±0.979 and 3.553 ±1.58 MPa for fully tripodal and tripodal designs, respectively; P=.007), and tripodal obturators produced more resistance to middle displacement (5.441 ±1.778 and 2.784 ±0.432 MPa for tripodal and fully tripodal design respectively; P=.001). The fully tripodal obturator showed more retention (3.736 ±1.182 MPa) than the linear one (2.493 ±1.052 MPa; P=.001). The maxillary central incisor was the most stressed abutment, followed by the lateral incisor, while the second molar was the least.
CONCLUSIONS: Regarding retention, the fully tripodal obturator produces retention comparable with the tripodal and significantly more than the linear. Acrylic resin prostheses retained with Adams clasps may be similar to metal-based prostheses regarding retention and stress distribution on the supporting structures.
METHODS: This is a post hoc analysis of data from a multicenter cluster-randomised controlled trial enrolling newly admitted critically ill patients (n = 2772). Participants without chronic kidney disease and with complete data concerning baseline renal function were included in this study. The primary outcome was 28-day mortality. Cox proportional hazards models were used to analyze the association between early protein delivery, reflected by mean protein delivery from day 3-5 after enrollment, 28-day mortality and whether baseline AKI stages interacted with this association.
RESULTS: Overall, 2552 patients were included, among whom 567 (22.2%) had AKI at enrollment (111 stage I, 87 stage II, 369 stage III). Mean early protein delivery was 0.60 ± 0.38 g/kg/day among the study patients. In the overall study cohort, each 0.1 g/kg/day increase in protein delivery was associated with a 5% reduction in 28-day mortality[hazard ratio (HR) = 0.95; 95% confidence interval (CI) 0.92-0.98, p
METHODS: The original CHIEF was cross-culturally adapted into the Malay language following the published guidelines on cross-cultural adaptation of health questionnaires. Its content and convergent validity were assessed using the content validity index and correlation with participants' gait speed, respectively. The reliability of M-CHIEF was assessed for its internal consistency using Cronbach's coefficient alpha and Cohen's kappa and its test-retest reliability was assessed using intraclass correlation coefficients (ICCs).
RESULTS: The M-CHIEF was rated with excellent content validity with a scale-level content validity index (S-CVI) of 0.86. Its internal consistency was demonstrated to be high with Cronbach's alpha of 0.84. The test-retest reliability at a two-week interval showed a stable score of the M-CHIEF and its subscales with an ICC value of 0.89.
CONCLUSIONS: The M-CHIEF is deemed relevant for use among Malay speakers. It can function as an instrument to quantify the environmental barriers of an individual while considering broad environmental factors including policy, physical/ structural, work/school, attitude/support, and services/assistance.
METHODS: In vitro models of invasive and non-invasive breast cancer were first established using MDA-MB-231 and MCF-7 cell lines, respectively. Cellular morphology was characterized, revealing spindle-like morphology in MDA-MB-231 and spherical morphology in MCF-7 cells. The baseline cellular traction force was quantified using the Traction force Microscopy technique. Cisplatin, a paradigm antimetastatic drug, and 5-Fluorouracil (5FU), a non-antimetastatic drug, were selected to evaluate the potential of cellular traction force as a drug testing readout for the in vitro cancer metastasis.
RESULTS: MDA-MB-231 cells exhibited significantly higher baseline cellular traction force compared to MCF-7 cells. Treatment with Cisplatin, an antimetastatic drug, and 5-Fluorouracil (5FU), a non-antimetastatic drug, demonstrated distinct effects on cellular traction force in MDA-MB-231 but not in MCF-7 cells. These findings correlate with the invasive potential observed in the two models.
CONCLUSION: Cellular traction force emerges as a promising metric for evaluating drug efficacy in inhibiting cancer metastasis using in vitro models. This approach could enhance the screening and development of novel anti-metastatic therapies, addressing a critical gap in current anticancer drug research.