Lu RS 1 , Asada K 2 , Krichbaum TP 3 , Park J 4 , Tazaki F 5 , Pu HY 4 Show all authors , Nakamura M 4 , Lobanov A 6 , Hada K 7 , Akiyama K 8 , Kim JY 6 , Marti-Vidal I 9 , Gómez JL 10 , Kawashima T 11 , Yuan F 12 , Ros E 6 , Alef W 6 , Britzen S 6 , Bremer M 13 , Broderick AE 14 , Doi A 15 , Giovannini G 16 , Giroletti M 17 , Ho PTP 4 , Honma M 18 , Hughes DH 19 , Inoue M 4 , Jiang W 12 , Kino M 20 , Koyama S 4 , Lindqvist M 21 , Liu J 6 , Marscher AP 22 , Matsushita S 4 , Nagai H 23 , Rottmann H 6 , Savolainen T 6 , Schuster KF 13 , Shen ZQ 12 , de Vicente P 24 , Walker RC 25 , Yang H 12 , Zensus JA 6 , Algaba JC 26 , Allardi A 27 , Bach U 6 , Berthold R 28 , Bintley D 28 , Byun DY 29 , Casadio C 30 , Chang SH 4 , Chang CC 31 , Chang SC 31 , Chen CC 4 , Chen MT 32 , Chilson R 32 , Chuter TC 28 , Conway J 21 , Crew GB 33 , Dempsey JT 28 , Dornbusch S 6 , Faber A 34 , Friberg P 28 , García JG 24 , Garrido MG 24 , Han CC 4 , Han KC 31 , Hasegawa Y 35 , Herrero-Illana R 36 , Huang YD 4 , Huang CL 4 , Impellizzeri V 37 , Jiang H 4 , Jinchi H 38 , Jung T 29 , Kallunki J 39 , Kirves P 39 , Kimura K 40 , Koay JY 4 , Koch PM 4 , Kramer C 13 , Kraus A 6 , Kubo D 32 , Kuo CY 41 , Li CT 4 , Lin LC 42 , Liu CT 4 , Liu KY 4 , Lo WP 4 , Lu LM 31 , MacDonald N 6 , Martin-Cocher P 4 , Messias H 36 , Meyer-Zhao Z 4 , Minter A 43 , Nair DG 44 , Nishioka H 4 , Norton TJ 45 , Nystrom G 32 , Ogawa H 35 , Oshiro P 32 , Patel NA 45 , Pen UL 4 , Pidopryhora Y 6 , Pradel N 4 , Raffin PA 32 , Rao R 45 , Ruiz I 46 , Sanchez S 46 , Shaw P 4 , Snow W 32 , Sridharan TK 47 , Srinivasan R 4 , Tercero B 24 , Torne P 46 , Traianou E 6 , Wagner J 6 , Walther C 28 , Wei TS 4 , Yang J 21 , Yu CY 4

Affiliations 

  • 1 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, People's Republic of China. rslu@shao.ac.cn
  • 2 Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan, ROC. asada@asiaa.sinica.edu.tw
  • 3 Max-Planck-Institut für Radioastronomie, Bonn, Germany. tkrichbaum@mpifr-bonn.mpg.de
  • 4 Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan, ROC
  • 5 Simulation Technology Development Department, Tokyo Electron Technology Solutions, Oshu, Japan
  • 6 Max-Planck-Institut für Radioastronomie, Bonn, Germany
  • 7 Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Oshu, Japan. kazuhiro.hada@nao.ac.jp
  • 8 Black Hole Initiative, Harvard University, Cambridge, MA, USA
  • 9 Departament d'Astronomia i Astrofísica, Universitat de València, Valencia, Spain
  • 10 Instituto de Astrofísica de Andalucía-CSIC, Granada, Spain
  • 11 Institute for Cosmic Ray Research, The University of Tokyo, Chiba, Japan
  • 12 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, People's Republic of China
  • 13 Institut de Radioastronomie Millimétrique, Saint Martin d'Hères, France
  • 14 Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
  • 15 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
  • 16 Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
  • 17 Istituto di Radio Astronomia, INAF, Bologna, Italy
  • 18 Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Oshu, Japan
  • 19 Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
  • 20 National Astronomical Observatory of Japan, Mitaka, Japan
  • 21 Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, Onsala, Sweden
  • 22 Institute for Astrophysical Research, Boston University, Boston, MA, USA
  • 23 Department of Astronomical Science, The Graduate University for Advanced Studies, SOKENDAI, Mitaka, Japan
  • 24 Observatorio de Yebes, IGN, Yebes, Spain
  • 25 National Radio Astronomy Observatory, Socorro, NM, USA
  • 26 Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
  • 27 University of Vermont, Burlington, VT, USA
  • 28 East Asian Observatory, Hilo, HI, USA
  • 29 Korea Astronomy and Space Science Institute, Daejeon, Republic of Korea
  • 30 Institute of Astrophysics, Foundation for Research and Technology, Heraklion, Greece
  • 31 System Development Center, National Chung-Shan Institute of Science and Technology, Taoyuan, Taiwan, ROC
  • 32 Institute of Astronomy and Astrophysics, Academia Sinica, Hilo, HI, USA
  • 33 Massachusetts Institute of Technology Haystack Observatory, Westford, MA, USA
  • 34 Western University, London, Ontario, Canada
  • 35 Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
  • 36 European Southern Observatory, Santiago, Chile
  • 37 Leiden Observatory, University of Leiden, Leiden, The Netherlands
  • 38 Electronic Systems Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan, Taiwan, ROC
  • 39 Metsähovi Radio Observatory, Aalto University, Kylmälä, Finland
  • 40 Japan Aerospace Exploration Agency, Tsukuba, Japan
  • 41 Department of Physics, National Sun Yat-Sen University, Kaohsiung City, Taiwan, ROC
  • 42 Department of Physics, National Cheng Kung University, Tainan, Taiwan, ROC
  • 43 Green Bank Observatory, Green Bank, WV, USA
  • 44 Astronomy Department, Universidad de Concepción, Concepción, Chile
  • 45 Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA
  • 46 Institut de Radioastronomie Millimétrique, Granada, Spain
  • 47 National Radio Astronomy Observatory, Charlottesville, VA, USA
Nature, 2023 Apr;616(7958):686-690.
PMID: 37100940 DOI: 10.1038/s41586-023-05843-w

Abstract

The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.