Displaying all 15 publications

Abstract:
Sort:
  1. Chang SH
    Carbohydr Polym, 2021 Mar 15;256:117423.
    PMID: 33483013 DOI: 10.1016/j.carbpol.2020.117423
    Chitosan, a prestigious versatile biopolymer, has recently received considerable attention as a promising biosorbent for recovering gold ions, mainly Au(III), from aqueous solutions, particularly in modified forms. Confirming the assertion, this paper provides an up-to-date overview of Au(III) recovery from aqueous solutions by raw (unmodified) and modified chitosan. A particular emphasis is placed on the raw chitosan and its synthesis from chitin, characteristics of raw chitosan and their effects on metal sorption, modifications of raw chitosan for Au(III) sorption, and characterization of raw chitosan before and after modifications for Au(III) sorption. Comparisons of the sorption (conditions, percentage, capacity, selectivity, isotherms, thermodynamics, kinetics, and mechanisms), desorption (agents and percentage), and reusable properties between raw and modified chitosan in Au(III) recovery from aqueous solutions are also outlined and discussed. The major challenges and future prospects towards the large-scale applications of modified chitosan in Au(III) recovery from aqueous solutions are also addressed.
  2. Chang SH
    Sci Total Environ, 2023 Mar 16;877:162719.
    PMID: 36933741 DOI: 10.1016/j.scitotenv.2023.162719
    Turning plastic waste into plastic oil by pyrolysis is one of the promising techniques to eradicate plastic waste pollution and accelerate the circular economy of plastic materials. Plastic waste is an attractive pyrolysis feedstock for plastic oil production owing to its favorable chemical properties of proximate analysis, ultimate analysis, and heating value other than its abundant availability. Despite the exponential growth of scientific output from 2015 to 2022, a vast majority of the current review articles cover the pyrolysis of plastic waste into a series of fuels and value-added products, and up-to-date reviews exclusively on plastic oil production from pyrolysis are relatively scarce. In light of this void in the current review articles, this review attempts to provide an up-to-date overview of plastic waste as pyrolysis feedstock for plastic oil production. A particular emphasis is placed on the common types of plastic as primary sources of plastic pollution, the characteristics (proximate analysis, ultimate analysis, hydrogen/carbon ratio, heating value, and degradation temperature) of various plastic wastes and their potential as pyrolysis feedstock, and the pyrolysis systems (reactor type and heating method) and conditions (temperature, heating rate, residence time, pressure, particle size, reaction atmosphere, catalyst and its operation modes, and single and mixed plastic wastes) used in plastic waste pyrolysis for plastic oil production. The characteristics of plastic oil from pyrolysis in terms of physical properties and chemical composition are also outlined and discussed. The major challenges and future prospects for the large-scale production of plastic oil from pyrolysis are also addressed.
  3. Chang SH
    Environ Sci Pollut Res Int, 2020 Sep;27(26):32371-32388.
    PMID: 32533493 DOI: 10.1007/s11356-020-09639-7
    Water pollution and depletion of natural resources have motivated the utilization of green organic solvents in solvent extraction (SX) and liquid membrane (LM) for sustainable wastewater treatment and resource recovery. SX is an old and established separation method, while LM, which combines both the solute removal and recovery processes of SX in a single unit, is a revolutionary separation technology. The organic solvents used for solute removal in SX and LM can be categorized into sole conventional, mixed conventional-green, and sole green organic solvents, whereas the stripping agents used for solute recovery include acids, bases, metal salts, and water. This review revealed that the performance of greener organic solvents (mixed conventional-green and sole green organic solvents) was on par with the sole conventional organic solvents. However, some green organic solvents may threaten food security, while others could be pricey. The distinctive extraction theories of various sole green organic solvents (free fatty acid-rich oils, triglyceride-rich oils, and deep eutectic solvents) affect their application suitability for a specific type of wastewater. Organic liquid wastes are among the optimal green organic solvents for SX and LM in consideration of their triple environmental, economic, and performance benefits.
  4. Chang SH, Jampang AOA
    Int J Biol Macromol, 2023 Dec 01;252:126491.
    PMID: 37625756 DOI: 10.1016/j.ijbiomac.2023.126491
    This work aimed to develop a modified chitosan adsorbent with enhanced adsorption selectivity for Au(III) over Cu(II) from acidic chloride solutions using low-cost and green raw materials. Various adsorbents, i.e., chitosan powder, chitosan microbeads, chitosan/palm kernel fatty acid distillate (PKFAD) microcomposites, magnetite nanoparticles, and chitosan/PKFAD/magnetite nanocomposites (CPMNs), were first evaluated for their ability to adsorb Au(III) and Cu(II) from single- and binary-metal solutions across different pH levels, followed by parametric analysis of Au(III) and Cu(II) adsorption from binary- and multi-metal solutions onto CPMNs, Au(III) desorption from Au(III)-loaded CPMNs, and reusability of CPMNs. Finally, Au(III)-loaded CPMNs were characterized with SEM-EDX, XRD, FTIR, and XPS to confirm the proposed adsorption mechanisms. Among all the adsorbents studied, CPMNs exhibited outstanding performance in adsorbing Au(III) from an equimolar binary Au(III)-Cu(II) solution, achieving the highest equilibrium adsorption capacity of 0.479 mmol/g (94.4 mg/g) without reaching saturation. Under optimal adsorption conditions of pH 3, 1 g/L CPMN dosage, and 90 min contact time, CPMNs adsorbed 96 % of Au(III) with a selectivity over Cu(II) exceeding 99 %. CPMNs demonstrated excellent reusability, maintaining over 80 % adsorption and desorption efficiencies for 5 cycles. The proposed adsorption mechanisms of CPMNs for Au(III) encompass electrostatic attraction, hydrogen bonding, solvation, and reduction.
  5. Chang SH, Teng TT, Ismail N
    J Environ Manage, 2011 Oct;92(10):2580-5.
    PMID: 21700383 DOI: 10.1016/j.jenvman.2011.05.025
    This study aimed to identify the significant factors that give large effects on the efficiency of Cu(II) extraction from aqueous solutions by soybean oil-based organic solvents using fractional factorial design. Six factors (mixing time (t), di-2-ethylhexylphosphoric acid concentration ([D2EHPA]), organic to aqueous phase ratio (O:A), sodium sulfate concentration ([Na(2)SO(4)]), equilibrium pH (pH(eq)) and tributylphosphate concentration ([TBP])) affecting the percentage extraction (%E) of Cu(II) were investigated. A 2(6-1) fractional factorial design was applied and the results were analyzed statistically. The results show that only [D2EHPA], pH(eq) and their second-order interaction ([D2EHPA] × pH(eq)) influenced the %E significantly. Regression models for %E were developed and the adequacy of the reduced model was examined. The results of this study indicate that fractional factorial design is a useful tool for screening a large number of variables and reducing the number of experiments.
  6. Chang SH, Teng TT, Ismail N
    J Hazard Mater, 2010 Sep 15;181(1-3):868-72.
    PMID: 20638965 DOI: 10.1016/j.jhazmat.2010.05.093
    Various types of vegetable oil-based organic solvents (VOS), i.e. vegetable oils (corn, canola, sunflower and soybean oils) with and without extractants (di-2-ethylhexylphosphoric acid (D2EHPA) and tributylphosphate (TBP)), were investigated into their potentiality as greener substitutes for the conventional petroleum-based organic solvents to extract Cu(II) from aqueous solutions. The pH-extraction isotherms of Cu(II) using various vegetable oils loaded with both D2EHPA and TBP were investigated and the percentage extraction (%E) of Cu(II) achieved by different types of VOS was determined. Vegetable oils without extractants and those loaded with TBP alone showed a poor extractability for Cu(II). Vegetable oils loaded with both D2EHPA and TBP were found to be the most effective VOS for Cu(II) extraction and, thus, are potential greener substitutes for the conventional petroleum-based organic solvents.
  7. Chang SH, Teng TT, Ismail N, Alkarkhi AF
    J Hazard Mater, 2011 Jun 15;190(1-3):197-204.
    PMID: 21493005 DOI: 10.1016/j.jhazmat.2011.03.025
    The objectives of this work were to select suitable design parameters and optimize the operating parameters of a soybean oil-based bulk liquid membrane (BLM) for Cu(II) removal and recovery from aqueous solutions. The soybean oil-based BLM consists of an aqueous feed phase (Cu(II) source), an organic membrane phase (soybean oil (diluent), di-2-ethylhexylphosphoric acid (D2EHPA) (carrier) and tributylphosphate (phase modifier)) and an aqueous stripping phase (sulfuric acid solution (H(2)SO(4))). Effects of design parameters (stirring condition and stripping/membrane to feed/membrane interface area ratio) of soybean oil-based BLM on the Cu(II) removal and recovery from aqueous solutions were investigated and the suitable parameters were selected for further studies. Optimization of the operating parameters (D2EHPA concentration, H(2)SO(4) concentration, stirring speed, temperature and operating time) of soybean oil-based BLM for maximum percentage (%) recovery of Cu(II) was then conducted using Response Surface Methodology and the optimum parameters were determined. A regression model for % recovery was developed and its adequacy was evaluated. The experimental % recovery obtained under the optimum operating conditions was compared with the predicted one and they were found to agree satisfactorily with each other.
  8. Gan WH, Thye YL, Chang SH, Chua CB, Looi LM, Tan SY
    Transplant Proc, 2004 Sep;36(7):2148-9.
    PMID: 15518779
  9. Chang SH, Lim CS, Low TS, Chong HT, Tan SY
    Transplant Proc, 2001 12 26;33(7-8):3700-1.
    PMID: 11750577
  10. Mehboob H, Tarlochan F, Mehboob A, Chang SH, Ramesh S, Harun WSW, et al.
    J Mater Sci Mater Med, 2020 Aug 20;31(9):78.
    PMID: 32816091 DOI: 10.1007/s10856-020-06420-7
    The current study is proposing a design envelope for porous Ti-6Al-4V alloy femoral stems to survive under fatigue loads. Numerical computational analysis of these stems with a body-centered-cube (BCC) structure is conducted in ABAQUS. Femoral stems without shell and with various outer dense shell thicknesses (0.5, 1.0, 1.5, and 2 mm) and inner cores (porosities of 90, 77, 63, 47, 30, and 18%) are analyzed. A design space (envelope) is derived by using stem stiffnesses close to that of the femur bone, maximum fatigue stresses of 0.3σys in the porous part, and endurance limits of the dense part of the stems. The Soderberg approach is successfully employed to compute the factor of safety Nf > 1.1. Fully porous stems without dense shells are concluded to fail under fatigue load. It is thus safe to use the porous stems with a shell thickness of 1.5 and 2 mm for all porosities (18-90%), 1 mm shell with 18 and 30% porosities, and 0.5 mm shell with 18% porosity. The reduction in stress shielding was achieved by 28%. Porous stems incorporated BCC structures with dense shells and beads were successfully printed.
  11. Fan PC, Kuo PH, Lee MT, Chang SH, Chiou LC
    Front Neurol, 2019;10:10.
    PMID: 30733702 DOI: 10.3389/fneur.2019.00010
    Background: Plasma calcitonin gene-related peptide (CGRP) plays a key role in the migraine pathophysiology. This study aimed to investigate its role in predicting diagnosis and outcome of pharmacotherapy in pediatric migraine. Methods: We prospectively recruited 120 subjects, who never took migraine-preventive agents in a pediatric clinic, including 68 patients with migraine, 30 with non-migraine headache (NM), and 22 non-headache (NH) age-matched controls. Short-term therapeutic response was measured for at least 2 weeks after the start of therapy. Responders were defined with >50% headache reduction. Plasma CGRP concentrations were measured by ELISA. Results: In the migraine group, more patients required acute therapy, as compared to the NM group (62/68, 91% vs. 5/30, 15%, p = 0.001). The mean plasma CGRP level in migraineurs either during (291 ± 60 pg/ml) or between (240 ± 48) attacks was higher than in NM patients (51 ± 5 pg/ml, p = 0.006 and 0.018, respectively) and NH controls (53 ± 6 pg/ml, p = 0.016 and 0.045, respectively). Forty-seven patients (69%) needed preventive treatments and had higher plasma CGRP levels (364 ± 62 pg/ml, n = 47) than those not (183 ± 54 pg/ml, n = 21) (p = 0.031). Topiramate responders had higher plasma CGRP levels than non-responders (437 ± 131 pg/ml, n = 14 vs. 67 ± 19 pg/ml, n = 6, p = 0.021). Survival curves of plasma CGRP levels also showed those with higher CGRP levels responded better to topiramate. Differences were not found in the other preventives. Conclusion: The plasma CGRP level can differentiate migraine from non-migraine headache. It may also serve as a reference for the therapeutic strategy since it is higher in patients requiring migraine prevention and responsive to short-term topiramate treatment. These results are clinically significant, especially for the young children who cannot clearly describe their headache symptoms and may provide new insights into the clinical practice for the diagnosis and treatment of pediatric migraine.
    Study site: Paediatric outpatient clinic,National Taiwan University Hospital (NTUH), Taiwan
  12. Gan GG, Phipps ME, Lee MM, Lu LS, Subramaniam RY, Bee PC, et al.
    Ann Hematol, 2011 Jun;90(6):635-41.
    PMID: 21110192 DOI: 10.1007/s00277-010-1119-6
    Within the Asian populations, Indian patients had been reported to require higher warfarin dose compared with the Chinese and Malay patients, and this could not entirely be explained by cytochrome P450 (CYP)2C9 gene variants. Genetic variants of vitamin K epoxide oxidase reductase complex subunit 1 (VKORC1) has been well established as one of key determinants in the different responses of warfarin amongst patients. Adult patients who attended an anticoagulation clinic with stable INR were recruited. VKORC1 and CYP2C9 genotype were sequenced, and clinical characteristics were assessed. A total of 91 Malays, 96 Chinese, and 46 Indian patients were recruited. The mean age was 55 years and 51.5% were males. The mean dose of warfarin for all patients was 3.7 mg, and the mean daily dose of warfarin was significantly higher in Indians compared with the Chinese and Malay patients, 4.9 versus 3.5 and 3.3 mg, respectively (p 
  13. Lin CY, Lay CH, Chew KW, Nomanbhay S, Gu RL, Chang SH, et al.
    Chemosphere, 2021 Feb;264(Pt 2):128564.
    PMID: 33065325 DOI: 10.1016/j.chemosphere.2020.128564
    Recently, the production of renewable biogas such as biohydrogen and biomethane from wastewaters through anaerobic fermentation has gained worldwide attention. In the present study, a mobile bioenergy generation station had been constructed based on a high-efficiency hydrogenesis & methanogenesis technology (HyMeTek) developed by Feng Chia University, Taiwan. The substrate was a beverage wastewater having chemical oxygen demand (COD) concentration of 1200 mg/L. This bioenergy station had a feedstock tank (3.8 m3), a nutrient tank (0.8 m3), an acidogenesis tank (AT, 2 m3), two methanogenesis tanks (MT, 4 m3 for each), a membrane bioreactor and a control room. Biogas production rate, methane concentration, COD removal efficiencies, energy efficiency and economical interest of the plant were assessed. The peak total methane production rates for AT (at hydraulic retention time, HRT, 4 h) and MT (at HRT 8 h) were 430 and 7 mL/L·d, respectively. A strategy of shortening HRT was a promising method to enhance biogas quality and energy efficiency. This mobile bioenergy system has commercial potential because it could bring good economic benefit of initial rate of return (58.84%) and payback time (2.68 y).
  14. Chang SH, Hsieh CH, Weng YM, Hsieh MS, Goh ZNL, Chen HY, et al.
    Biomed Res Int, 2018;2018:6983568.
    PMID: 30327779 DOI: 10.1155/2018/6983568
    Background: Renal abscess is a relatively uncommon yet debilitating and potentially fatal disease. There is no clearly defined, objective risk stratification tool available for emergency physicians' and surgeons' use in the emergency department (ED) to quickly determine the appropriate management strategy for these patients, despite early intervention having a beneficial impact on survival outcomes.

    Objective: This case control study evaluates the performance of Mortality in Emergency Department Sepsis Score (MEDS), Modified Early Warning Score (MEWS), Rapid Emergency Medicine Score (REMS), and Rapid Acute Physiology Score (RAPS) in predicting risk of mortality in ED adult patients with renal abscess. This will help emergency physicians, surgeons, and intensivists expedite the time-sensitive decision-making process.

    Methods: Data from 152 adult patients admitted to the EDs of two training and research hospitals who had undergone a contrast-enhanced computed tomography scan of the abdomen and was diagnosed with renal abscess from January 2011 to December 2015 were analyzed, with the corresponding MEDS, MEWS, REMS, RAPS, and mortality risks calculated. Ability to predict patient mortality was assessed via receiver operating curve analysis and calibration analysis.

    Results: MEDS was found to be the best performing physiologic scoring system, with sensitivity, specificity, and accuracy of 87.50%, 88.89%, and 88.82%, respectively. Area under receiver operating characteristic curve (AUROC) value was 0.9440, and negative predictive value was 99.22% with a cutoff of 9 points.

    Conclusion: Our study is the largest of its kind in examining ED patients with renal abscess. MEDS has been demonstrated to be superior to MEWS, REMS, and RAPS in predicting mortality for this patient population. We recommend its use for evaluation of disease severity and risk stratification in these patients, to expedite identification of critically ill patients requiring urgent intervention.

  15. Lu RS, Asada K, Krichbaum TP, Park J, Tazaki F, Pu HY, et al.
    Nature, 2023 Apr;616(7958):686-690.
    PMID: 37100940 DOI: 10.1038/s41586-023-05843-w
    The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links