Affiliations 

  • 1 Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
  • 2 College of Eco-Environmental Engineering, Qinghai University, Xining, China
  • 3 Tibetan Medical College, Qinghai University, Xining, China
  • 4 Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia. Electronic address: wongtinwui@uitm.edu.my
  • 5 Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China; College of Eco-Environmental Engineering, Qinghai University, Xining, China. Electronic address: djzhang@qhu.edu.cn
Phytomedicine, 2024 Jan;123:155229.
PMID: 38006804 DOI: 10.1016/j.phymed.2023.155229

Abstract

BACKGROUND: Triphala (TLP), as a Chinese Tibetan medicine composing of Emblica officinalis, Terminalia chebula and Terminalia bellirica (1.2:1.5:1), exhibited hepatoprotective, hypolipidemic and gut microbiota modulatory effects. Nonetheless, its roles in prevention of high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) and the related mechanistic insights involving the interplay of gut microbiota and hepatic inflammation are not known.

PURPOSE: The present study seeks to determine if TLP would prevent HFD-induced NAFLD in vivo and its underlying mechanisms from the perspectives of gut microbiota, metabolites, and hepatic inflammation.

METHODS: TLP was subjected to extraction and chemo-profiling, and in vivo evaluation in HFD-fed rats on hepatic lipid and inflammation, intestinal microbiota, short-chain fatty acids (SCFAs) and permeability, and body weight and fat content profiles.

RESULTS: The TLP was primarily constituted of gallic acid, corilagin and chebulagic acid. Orally administered HFD-fed rats with TLP were characterized by the growth of Ligilactobacillus and Akkermansia, and SCFAs (acetic/propionic/butyric acid) secretion which led to increased claudin-1 and zonula occludens-1 expression that reduced the mucosal permeability to migration of lipopolysaccharides (LPS) into blood and liver. Coupling with hepatic cholesterol and triglyceride lowering actions, the TLP mitigated both inflammatory (ALT, AST, IL-1β, IL-6 and TNF-α) and pro-inflammatory (TLR4, MYD88 and NF-κB P65) activities of liver, and sequel to histopathological development of NAFLD in a dose-dependent fashion.

CONCLUSION: TLP is promisingly an effective therapy to prevent NAFLD through modulating gut microbiota, mucosal permeability and SCFAs secretion with liver fat and inflammatory responses.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.