Affiliations 

  • 1 Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China; Faculty of Medicine, MAHSA University, Jalan SP 2, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia; Key Laboratory of Medical Research Basic Guaranteefor Immune-Related Diseases Research of Guangxi (Cultivation), Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China. Electronic address: 1931@ymun.edu.cn
  • 2 Graduate School of Youjiang Medical College for Nationalities, Baise, Guangxi, 533000, China
  • 3 School of Bioscience, Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Jalan SP2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
  • 4 Departmental of Preclinical Science,Faculty of Dentistry, MAHSA University Jalan SP 2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia. Electronic address: ctooi@mahsa.edu.my
  • 5 Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China; Department of Neurology, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China. Electronic address: 00025@ymun.edu.cn
Biochem Biophys Res Commun, 2024 Dec 31;741:151013.
PMID: 39591906 DOI: 10.1016/j.bbrc.2024.151013

Abstract

This study investigates the role of Caspase-11 in Chronic Kidney Disease (CKD) and examines the therapeutic potential of inhibiting Caspase-11 using exosome-mediated siRNA. We established a CKD rat model and analyzed the expression of Caspase-11 through immunohistochemistry. The study involved overexpressing Caspase-11 using an adeno-associated virus (AAV) and constructing exosomes loaded with siRNA targeting Caspase-11 (exo-si-Caspase-11). Renal tissue damage and fibrosis were assessed using H&E staining, Masson's trichrome, TUNEL assay, and Sirius Red staining. Additionally, urinary protein and blood urea nitrogen (BUN) levels were measured, alongside analyses of serum calcium and phosphorus levels. H&E staining was performed to evaluate the effects of exo-si-Caspase-11 on damage to the heart, liver, spleen, and lungs. The results showed that the CKD model group experienced significant weight loss, increased blood pressure, and elevated Caspase-11 expression. AAV-mediated Caspase-11 overexpression led to substantial renal fibrosis, increased apoptosis, and elevated urinary protein and BUN levels. Additionally, the group with Caspase-11 overexpression exhibited elevated serum calcium and phosphorus levels. Conversely, treatment with exo-si-Caspase-11 reduced these pathological changes in renal tissue without causing damage to other major organs. These findings suggest that exosome-mediated siRNA delivery targeting Caspase-11 is an effective therapeutic strategy for CKD.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.