This study explored how setting conditions affect the gel properties of shrimp surimi from Solenocera crassicornis using a two-step heating process with varying temperatures (30, 40, 50 °C) and durations (0-120 min). At 30 °C, increased hydrogen bonds and cross-linking promoted macromolecular polymer formation, with optimal elasticity achieved at 15-30 min, but longer times led to gel aggregation and uneven structure. At 40 °C, macromolecular polymer decreased, while sulfhydryl groups increased, leading to disulfide bond formation, which disrupted hydrogen bonds and increased hydrophobic groups. Gel strength decreased over setting time, with a soft and smooth texture observed after 15-30 min. Setting at 50 °C disrupted chemical bonds, exposed hydrophobic groups, and resulted in less significant changes in storage modulus and loss modulus. After high-temperature gelation at 90 °C, disulfide bonds were further disrupted, reducing the stability of gel properties. Moreover, an increase in the setting temperature affected the internal water distribution within the shrimp surimi gel. A shorter setting time promoted the absorption of water molecules by starch in the gel, thereby reducing the free water content. However, when the setting time exceeded 60 min, the proportions of bound water and immobile water decreased, gradually transforming into free water. This transformation increased the drip loss and softened the texture of gel. In summary, setting conditions significantly influenced moisture distribution, viscoelasticity, and chemical forces in shrimp surimi gels.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.